Azimuthally polarized surface plasmons as effective terahertz waveguides.

Quite recently, it was found that metal wires can effectively guide terahertz radiation. Based on the fact that the absolute values of the relative permittivities of metals in the spectral region of terahertz radiation are huge, we here analyse the properties of this kind of waveguide and explain the related experimental results. In particular, we show that the observed waveguiding is due to the propagation of an azimuthally polarized surface plasmon along the wire. Some related aspects, such as the choice of metal and the slowly decaying modal field, are also discussed. In particular, we show that, if a copper wire with a radius of 0.45 mm is used, the attenuation coefficient is smaller than 2x10-3 cm-1 in the whole range of 0.1~1 THz.

[1]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[2]  Eleftherios N. Economou,et al.  Surface polaritons in a circularly cylindrical interface: Surface plasmons , 1974 .

[3]  Q. Zhan,et al.  Focus shaping using cylindrical vector beams. , 2002, Optics express.

[4]  E. Linfield,et al.  Terahertz Pulsed Imaging of Skin Cancer in the Time and Frequency Domain , 2003, Journal of biological physics.

[5]  D. Grischkowsky,et al.  Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides. , 1999, Optics letters.

[6]  P. Lalanne,et al.  Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. , 2002, Physical review letters.

[7]  J. Fajans,et al.  Saturation in “nonmagnetic” stainless steel , 1998 .

[8]  S. Coleman,et al.  A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics , 2003 .

[9]  D. Mittleman,et al.  Chemical recognition of gases and gas mixtures with terahertz waves. , 1996, Optics letters.

[10]  K. Kawase,et al.  Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. , 2003, Optics express.

[11]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[12]  Daniel R. Grischkowsky,et al.  Plastic ribbon THz waveguides , 2000 .

[13]  G Leuchs,et al.  Sharper focus for a radially polarized light beam. , 2003, Physical review letters.

[14]  D. Grischkowsky,et al.  Undistorted guided-wave propagation of subpicosecond terahertz pulses. , 2001, Optics letters.

[15]  Daniel R. Grischkowsky,et al.  Characterization of an optoelectronic terahertz beam system , 1990 .

[16]  R. Jacobsen,et al.  Generation and detection of terahertz pulses from biased semiconductor antennas , 1996 .

[17]  Gerd Leuchs,et al.  Focusing light to a tighter spot , 2000 .

[18]  R. Mendis,et al.  THz interconnect with low-loss and low-group velocity dispersion , 2001, IEEE Microwave and Wireless Components Letters.

[19]  M. Nuss,et al.  Subpicosecond photoconducting dipole antennas , 1988 .

[20]  Daniel R. Grischkowsky,et al.  Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers , 2000 .

[21]  J. Hvam,et al.  Waveguiding in surface plasmon polariton band gap structures. , 2001, Physical review letters.