Discrete-Fourier-Transform-Based Framework for Analysis and Synthesis of Cylindrical Omega -Bianisotropic Metasurfaces

This paper presents a framework for analyzing and designing cylindrical omega-bianisotropic metasurfaces, inspired by mode matching and digital signal processing techniques. Using the discrete Fourier transform, we decompose the azimuthally varying omega-bianisotropic surface parameters as well as the electric and magnetic field distributions into orthogonal modes. Then, by invoking appropriate boundary conditions, we set up systems of algebraic equations which can be rearranged to either predict the scattered fields of prespecified metasurfaces, or to synthesize metasurfaces which support arbitrarily stipulated field transformations. The proposed framework facilitates the efficient evaluation of electromagnetic field distributions that satisfy local power conservation, which is one of the key difficulties involved with the design of passive and lossless scalar metasurfaces. It represents a promising solution to circumvent the need for active components, controlled power dissipation, or tensorial surface polarizabilities in many state-of-the art conformal metasurface-based devices. To demonstrate the robustness and the versatility of the proposed technique, we design several devices intended for different applications and numerically verify them using finite element simulations.

[1]  S. Hum,et al.  Dual-Band Reflective Metagratings With Interleaved Meta-Wires , 2021, IEEE Transactions on Antennas and Propagation.

[2]  D. Kwon Illusion electromagnetics for free-standing objects using passive lossless metasurfaces , 2020 .

[3]  S. Hum,et al.  Dual-band Anomalous Reflection with Interleaved Metagratings , 2020, 2020 14th European Conference on Antennas and Propagation (EuCAP).

[4]  G. Eleftheriades,et al.  Active Cloaking of a Non-Uniform Scatterer , 2020, Scientific Reports.

[5]  G. Eleftheriades,et al.  Design and Experimental Demonstration of Impedance-Matched Circular-Polarization-Selective Surfaces with Spin-Selective Phase Modulations , 2020, Physical Review Applied.

[6]  Zvonimir Sipus,et al.  Modeling Cascaded Cylindrical Metasurfaces with Spatially-Varying Impedance Distribution , 2019, Radioengineering.

[7]  A. Epstein,et al.  Fabry-Pérot Huygens' metasurfaces: On homogenization of electrically thick composites , 2019, Physical Review B.

[8]  S. Hum,et al.  Augmented Unit Cells for Realizing TM-Polarized Huygens’ Metasurfaces , 2019, 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting.

[9]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[10]  M. Dehmollaian,et al.  Perfect Penetrable Cloaking Using Gain-Less and Loss-less Bianisotropic Metasurfaces , 2019, 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting.

[11]  Andrea Alù,et al.  Roadmap on metasurfaces , 2019, Journal of Optics.

[12]  S. Hum,et al.  Augmented Huygens’ Metasurfaces Employing Baffles for Precise Control of Wave Transformations , 2019, IEEE Transactions on Antennas and Propagation.

[13]  F. Capolino,et al.  Illusion mechanisms with cylindrical metasurfaces: A general synthesis approach , 2019, Physical Review B.

[14]  G. Eleftheriades,et al.  Design and Experimental Verification of a Passive Huygens’ Metasurface Lens for Gain Enhancement of Frequency-Scanning Slotted-Waveguide Antennas , 2019, IEEE Transactions on Antennas and Propagation.

[15]  George V. Eleftheriades,et al.  A Leaky-Wave Antenna With Controlled Radiation Using a Bianisotropic Huygens’ Metasurface , 2018, IEEE Transactions on Antennas and Propagation.

[16]  D. Kwon Lossless tensor surface electromagnetic cloaking for large objects in free space , 2018, Physical Review B.

[17]  M. Dehmollaian,et al.  Wave Scattering by a Cylindrical Metasurface Cavity of Arbitrary Cross Section: Theory and Applications , 2018, IEEE Transactions on Antennas and Propagation.

[18]  G. Eleftheriades,et al.  Bianisotropic Huygens’ Metasurface Pairs for Nonlocal Power-Conserving Wave Transformations , 2018, IEEE Antennas and Wireless Propagation Letters.

[19]  S. Hum,et al.  Generalized Synthesis Technique for High-Order Low-Profile Dual-Band Frequency Selective Surfaces , 2018, IEEE Transactions on Antennas and Propagation.

[20]  George V. Eleftheriades,et al.  Huygens’ metasurfaces from microwaves to optics: a review , 2018, Nanophotonics.

[21]  Sergei A. Tretyakov,et al.  Bianisotropic metasurfaces: physics and applications , 2018, Nanophotonics.

[22]  A. D'iaz-Rubio,et al.  Highly Efficient Generation of Angular Momentum with Cylindrical Bianisotropic Metasurfaces , 2018, Physical Review Applied.

[23]  S. Huang,et al.  Simulation of Circular Cylindrical Metasurfaces Using GSTC-MoM , 2018, IEEE Journal on Multiscale and Multiphysics Computational Techniques.

[24]  M. Chen,et al.  Theory, design, and experimental verification of a reflectionless bianisotropic Huygens' metasurface for wide-angle refraction. , 2018, 1812.05084.

[25]  Sean Victor Hum,et al.  A Technique for Designing Multilayer Multistopband Frequency Selective Surfaces , 2018, IEEE Transactions on Antennas and Propagation.

[26]  Zvonimir Sipus,et al.  Modelling Cascaded Cylindrical Metasurfaces Using Sheet Impedances and a Transmission Matrix Formulation , 2018 .

[27]  Ariel Epstein,et al.  Synthesis of Passive Lossless Metasurfaces Using Auxiliary Fields for Reflectionless Beam Splitting and Perfect Reflection. , 2016, Physical review letters.

[28]  S. Tcvetkova,et al.  Perfect control of reflection and refraction using spatially dispersive metasurfaces , 2016, 1605.02044.

[29]  George V. Eleftheriades,et al.  Arbitrary Power-Conserving Field Transformations With Passive Lossless Omega-Type Bianisotropic Metasurfaces , 2016, IEEE Transactions on Antennas and Propagation.

[30]  D. Werner,et al.  Restoring Intrinsic Properties of Electromagnetic Radiators Using Ultralightweight Integrated Metasurface Cloaks , 2015 .

[31]  Ariel Epstein,et al.  Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures , 2015, Nature Communications.

[32]  Shah Nawaz Burokur,et al.  Illusion optics: Optically transforming the nature and the location of electromagnetic emissions , 2015 .

[33]  Christophe Caloz,et al.  General Metasurface Synthesis Based on Susceptibility Tensors , 2014, IEEE Transactions on Antennas and Propagation.

[34]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[35]  G. Eleftheriades,et al.  Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. , 2013, Optics express.

[36]  S. Tretyakov,et al.  Synthesis of Polarization Transformers , 2013, IEEE Transactions on Antennas and Propagation.

[37]  S. Tretyakov,et al.  Balanced and optimal bianisotropic particles: maximizing power extracted from electromagnetic fields , 2013, 1302.2782.

[38]  G. V. Eleftheriades,et al.  An Active Electromagnetic Cloak Using the Equivalence Principle , 2012, IEEE Antennas and Wireless Propagation Letters.

[39]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[40]  Tayeb A. Denidni,et al.  Wide-Angle Beam Steering Based on an Active Conformal Metasurface Lens , 2019, IEEE Access.

[41]  George V. Eleftheriades,et al.  Reflectionless Wide-Angle Refracting Metasurfaces , 2016, IEEE Antennas and Wireless Propagation Letters.

[42]  C. Balanis Advanced Engineering Electromagnetics , 1989 .