Review of effective thermal conductivity models for foods

Abstract The literature associated with modelling and predicting the thermal conductivities of food products has been reviewed. The uncertainty involved in thermal conductivity prediction increases as the differences between the food components' thermal conductivities increase, which means that there is greater uncertainty involved with predicting the thermal conductivity of foods which are porous and/or frozen, than with unfrozen, non-porous foods. For unfrozen, non-porous foods, a number of simple effective thermal conductivity models that are functions only of the components' thermal conductivities and volume fractions may be used to provide predictions to within ±10%. For frozen and/or porous foods, the prediction procedure is more complicated, and usually requires the prediction of porosity and/or ice fraction, which introduces another source of error. The effective thermal conductivity model for these foods may require an extra parameter (in addition to the components' thermal conductivities and volume fractions) whose value must often be determined empirically. Recommendations for selecting models for different classes of foods are provided. There is scope for more research to be done in this area.

[1]  Nasser Hamdami,et al.  Effective thermal conductivity of a high porosity model food at above and sub-freezing temperatures , 2003 .

[2]  A General Form of Thermal Conductivity Equation for an Apple Sample During Drying: Variation with Moisture Content and Temperature , 1995 .

[3]  O. Miyawaki,et al.  Effective thermal diffusivity of food gels impregnated with air bubbles , 1999 .

[4]  J. Carson,et al.  Predicting the effective thermal conductivity of unfrozen, porous foods , 2006 .

[5]  Md. Shafiur Rahman Thermal conductivity of four food materials as a single function of porosity and water content , 1992 .

[6]  Donald J. Cleland,et al.  A new approach to modelling the effective thermal conductivity of heterogeneous materials , 2006 .

[7]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[8]  J. Carson,et al.  An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations , 2003 .

[9]  Theodore H. Bauer,et al.  A general analytical approach toward the thermal conductivity of porous media , 1993 .

[10]  D. R. Chaudhary,et al.  RESEARCH NOTES: Heat transfer through a three-phase porous medium , 1968 .

[11]  Gustavo V. Barbosa-Cánovas,et al.  Proceedings of the eighth international congress on engineering and food , 2001 .

[12]  Michel Laurent,et al.  Thermal properties of model foods in the frozen state , 1992 .

[13]  Mohd Azlan Hussain,et al.  Prediction of pores formation (porosity) in foods during drying: generic models by the use of hybrid neural network , 2002 .

[14]  Martin R. Okos,et al.  Measurement and Prediction of Thermal Properties of Foods , 1989 .

[15]  R. B. Keey,et al.  Drying of Loose and Particulate Materials , 1992 .

[16]  Q. T. Pham,et al.  Thermal Conductivity of Fresh Lamb Meat, Offals and Fat in the Range ‐40 to +30oC: Measurements and Correlations , 1989 .

[17]  Enrique Rotstein,et al.  Prediction of Thermal Conductivity of Vegetable Foods by the Effective Medium Theory , 1986 .

[18]  D. Heldman,et al.  Prediction models for the thermal conductivity of aqueous starch , 2004 .

[19]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[20]  Rolf Landauer,et al.  The Electrical Resistance of Binary Metallic Mixtures , 1952 .

[21]  A G Leach,et al.  The thermal conductivity of foams. I. Models for heat conduction , 1993 .

[22]  W. R. V. Wijk,et al.  Physics of Plant Environment , 1964 .

[23]  R. Paul Singh,et al.  Food properties and computer-aided engineering of food processing systems , 1989 .

[24]  James K. Carson,et al.  Thermal conductivity bounds for isotropic, porous materials , 2005 .

[25]  Mohammad Shafiur Rahman,et al.  An improved thermal conductivity prediction model for fruits and vegetables as a function of temperature, water content and porosity , 1997 .

[26]  Nasser Hamdami,et al.  Thermophysical properties evolution of French partly baked bread during freezing , 2004 .

[27]  Gilles Trystram,et al.  Modelling heat and mass transfer during the continuous baking of biscuits , 2002 .

[28]  Ernst Behrens,et al.  Thermal Conductivities of Composite Materials , 1968 .

[29]  Zacharias B. Maroulis,et al.  A structural generic model to predict the effective thermal conductivity of fruits and vegetables during drying , 2002 .

[30]  Z. Maroulis,et al.  A STRUCTURAL GENERIC MODEL TO PREDICT THE EFFECTIVE THERMAL CONDUCTIVITY OF GRANULAR MATERIALS , 2001 .

[31]  A. Eucken,et al.  Allgemeine Gesetzmäßigkeiten für das Wärmeleitvermögen verschiedener Stoffarten und Aggregatzustände , 1940 .

[32]  John R. Grace,et al.  Modelling and Simulation of Batch and Continuous Fluidized Bed Dryers , 1995 .

[33]  F. L Levy,et al.  A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures , 1981 .

[34]  Julien Andrieu,et al.  Experimental data and modelling of thermal properties of ice creams , 2003 .

[35]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[36]  S. Lovatt,et al.  Additional thermal conductivity values of foods measured by a guarded hot plate , 1998 .

[37]  Omar T Farouki,et al.  Thermal properties of soils , 1981 .

[38]  Evangelos Tsotsas,et al.  Thermal conductivity of packed beds: A review , 1987 .

[39]  R. V. D. Sman,et al.  Predicting the initial freezing point and water activity of meat products from composition data , 2005 .

[40]  R. Mascheroni,et al.  A model for the thermal conductivity of frozen meat. , 1977, Meat science.

[41]  E. Gonzo Estimating correlations for the effective thermal conductivity of granular materials , 2002 .

[42]  Shyam S. Sablani,et al.  Using neural networks to predict thermal conductivity of food as a function of moisture content, temperature and apparent porosity , 2003 .

[43]  S. Sahin,et al.  Physical properties of foods , 2006 .

[44]  A. L. Loeb Thermal Conductivity: VIII, A Theory of Thermal Conductivity of Porous Materials , 1954 .

[45]  Stuart Thorne Mathematical modelling of food processing operations , 1992 .

[46]  S. Cheng,et al.  The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures , 1969 .

[47]  P. Harriott Thermal conductivity of catalyst pellets and other porous particles , 1975 .

[48]  H. T. Davis,et al.  Transport Processes in Composite Media , 1975 .

[49]  Shyam S. Sablani,et al.  Neural networks for predicting thermal conductivity of bakery products , 2002 .

[50]  Mohammad Shafiur Rahman,et al.  Application of the distribution factor concept in correlating thermal conductivity data for fruits and vegetables , 1998 .

[51]  P. Nesvadba,et al.  Methods for the measurement of thermal conductivity and diffusivity of foodstuffs , 1982 .

[52]  Jacob Bear,et al.  Transport Phenomena in Porous Media , 1998 .

[53]  R. Mascheroni,et al.  Extension of soil thermal conductivity models to frozen meats with low and high fat content , 2005 .

[54]  Martin R. Okos,et al.  CALCULATION of INITIAL FREEZING POINT, EFFECTIVE MOLECULAR WEIGHT and UNFREEZABLE WATER of FOOD MATERIALS FROM COMPOSITION and THERMAL CONDUCTIVITY DATA , 1996 .

[55]  C. A. Miles,et al.  Estimating the initial freezing point of foods from composition data , 1997 .

[56]  J. Throne,et al.  Methods for predicting the thermal conductivity of composite systems: A review , 1976 .

[57]  S. Kirkpatrick Percolation and Conduction , 1973 .