Dual-phase-lag one-dimensional thermo-porous-elasticity with microtemperatures
暂无分享,去创建一个
[1] B. Feng,et al. Decay of solutions for a one-dimensional porous elasticity system with memory: the case of non-equal wave speeds , 2019 .
[2] P. Říha. On the theory of heat-conducting micropolar fluids with microtemperatures , 1975 .
[3] Stephen C. Cowin,et al. A nonlinear theory of elastic materials with voids , 1979 .
[4] R. Grot. Thermodynamics of a continuum with microstructure , 1969 .
[5] Zhuangyi Liu,et al. Time decay in dual-phase-lag thermoelasticity: critical case , 2017 .
[6] R. Quintanilla,et al. On the time decay of solutions in porous-elasticity with quasi-static microvoids , 2007 .
[7] R. Quintanilla. A CONDITION ON THE DELAY PARAMETERS IN THE ONE-DIMENSIONAL DUAL-PHASE-LAG THERMOELASTIC THEORY , 2003 .
[8] Zhuangyi Liu,et al. Dual‐phase‐lag heat conduction with microtemperatures , 2021, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.
[9] Dorin Ieşan,et al. A theory of thermoelastic materials with voids , 1986 .
[10] Yuri Tomilov,et al. Optimal polynomial decay of functions and operator semigroups , 2009, 0910.0859.
[11] A. Eringen. Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.
[12] On the existence and uniqueness in phase-lag thermoelasticity , 2018 .
[13] P. Říha,et al. On the microcontinuum model of heat conduction in materials with inner structure , 1976 .
[14] Alain Miranville,et al. Exponential decay in one-dimensional type II thermoviscoelasticity with voids , 2020, J. Comput. Appl. Math..
[15] Ramón Quintanilla,et al. Exponential decay in one-dimensional type III thermoelasticity with voids , 2019, Appl. Math. Lett..
[16] S. Cowin. The viscoelastic behavior of linear elastic materials with voids , 1985 .
[17] Upc,et al. ON THE EXISTENCE AND UNIQUENESS IN PHASE-LAG THERMOELASTICITY , 2017 .
[18] D. S. Almeida Júnior,et al. On the Decay Rates of Porous Elastic Systems , 2017 .
[19] Stephen C. Cowin,et al. Linear elastic materials with voids , 1983 .
[20] R. Quintanilla,et al. Exponential stability in thermoelasticity with microtemperatures , 2005 .
[21] D. S. Almeida Júnior,et al. Stabilization for an inhomogeneous porous‐elastic system with temperature and microtemperature , 2020, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.
[22] D. Ieşan. THERMOELASTICITY OF BODIES WITH MICROSTRUCTURE AND MICROTEMPERATURES , 2007 .
[23] Antonio Magaña,et al. On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity , 2006, Asymptot. Anal..
[24] R. Quintanilla,et al. Exponential stability in type III thermoelasticity with microtemperatures , 2018, Zeitschrift für angewandte Mathematik und Physik.
[25] Ciro D'Apice,et al. On the theory of thermoelasticity with microtemperatures , 2013 .
[26] M. C. Leseduarte,et al. ON THE TIME DECAY OF SOLUTIONS IN POROUS-THERMO-ELASTICITY OF TYPE II , 2009 .
[27] G. Viccione,et al. Rayleigh waves in isotropic strongly elliptic thermoelastic materials with microtemperatures , 2017, 2103.10785.
[28] M. I. M. Copetti,et al. Numerical analysis of a dual-phase-lag model with microtemperatures , 2021 .
[29] A. J. A. Ramos,et al. A new exponential decay result for one-dimensional porous dissipation elasticity from second spectrum viewpoint , 2020, Appl. Math. Lett..
[30] B. Feng,et al. Optimal decay for a porous elasticity system with memory , 2019, Journal of Mathematical Analysis and Applications.
[31] José R. Fernández,et al. A thermoelastic problem with diffusion, microtemperatures, and microconcentrations , 2018, Acta Mechanica.
[32] Ramón Quintanilla,et al. Qualitative Aspects in Dual-Phase-Lag Thermoelasticity , 2006, SIAM J. Appl. Math..
[33] Marina Bosch,et al. Thermoelastic Models Of Continua , 2016 .
[34] R. Quintanilla,et al. Phase-lag heat conduction: decay rates for limit problems and well-posedness , 2014 .
[35] Yang Wang,et al. On the phase-lag heat equation with spatial dependent lags , 2017 .
[36] D. Tzou. A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales , 1995 .
[37] Stephen C. Cowin,et al. A continuum theory for granular materials , 1972 .
[38] R. Quintanilla,et al. On the decay of solutions for porous-elastic systems with history ✩ , 2011 .