Ps-LAMBDA: Ambiguity success rate evaluation software for interferometric applications

Integer ambiguity resolution is the process of estimating the unknown ambiguities of carrier-phase observables as integers. It applies to a wide range of interferometric applications of which Global Navigation Satellite System (GNSS) precise positioning is a prominent example. GNSS precise positioning can be accomplished anytime and anywhere on Earth, provided that the integer ambiguities of the very precise carrier-phase observables are successfully resolved. As wrongly resolved ambiguities may result in unacceptably large position errors, it is crucial that one is able to evaluate the probability of correct integer ambiguity estimation. This ambiguity success rate depends on the underlying mathematical model as well as on the integer estimation method used. In this contribution, we present the Matlab toolbox Ps-LAMBDA for the evaluation of the ambiguity success rates. It allows users to evaluate all available success rate bounds and approximations for different integer estimators. An assessment of the sharpness of the bounds and approximations is given as well. Furthermore, it is shown how the toolbox can be used to assess the integer ambiguity resolution performance for design and research purposes, so as to study for instance the impact of using different GNSS systems and/or different measurement scenarios.

[1]  P. Teunissen An optimality property of the integer least-squares estimator , 1999 .

[2]  Jingnan Liu,et al.  Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning , 2012, Journal of Geodesy.

[3]  Otmar Loffeld,et al.  Instantaneous Triple-Frequency GPS Cycle-Slip Detection and Repair , 2009 .

[4]  Fernando Sansò,et al.  Real-time cycle slip detection in triple-frequency GNSS , 2011, GPS Solutions.

[5]  Peter Teunissen ADOP based upper bounds for the bootstrapped and the least squares ambiguity success. , 2000 .

[6]  Michael Bartusch,et al.  The TanDEM-X Mission , 2008 .

[7]  P. Teunissen,et al.  Phase ambiguity resolution for stacked radar interferometric data , 2001 .

[8]  Shuanggen Jin,et al.  Cycle slip detection using multi-frequency GPS carrier phase observations: A simulation study , 2010 .

[9]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[10]  Stephen P. Boyd,et al.  Integer parameter estimation in linear models with applications to GPS , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[11]  T. Foerster,et al.  HIGH-PRECISION POSITIONING AND REAL-TIME DATA PROCESSING OF UAV-SYSTEMS , 2012 .

[12]  Peter Teunissen,et al.  A canonical theory for short GPS baselines. Part II: the ambiguity precision and correlation , 1997 .

[13]  P. Teunissen Success probability of integer GPS ambiguity rounding and bootstrapping , 1998 .

[14]  Grzegorz Michalak,et al.  GPS Radio Occultation with CHAMP, GRACE-A, SAC-C, TerraSAR-X, and FORMOSAT-3/COSMIC: Brief Review of Results from GFZ , 2009 .

[15]  D. Odijk Fast precise GPS positioning in the presence of ionospheric delays , 2002 .

[16]  Oliver Zelzer,et al.  The Relationship Between Network RTK Solutions MAC, VRS, PRS, FKP and i-MAX , 2008 .

[17]  Bernhard Hofmann-Wellenhof,et al.  GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more , 2007 .

[18]  Ramon F. Hanssen,et al.  Tropospheric delay estimation and analysis using GPS and SAR interferometry , 2002 .

[19]  Peter Teunissen,et al.  The probability distribution of the GPS baseline for a class of integer ambiguity estimators , 1999 .

[20]  S. Verhagen ON THE RELIABILITY OF INTEGER AMBIGUITY RESOLUTION , 2005 .

[21]  G. Strang,et al.  Linear Algebra, Geodesy, and GPS , 1997 .

[22]  G. Blewitt Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km , 1989 .

[23]  Boudewijn Ambrosius,et al.  Crustal motion and block behaviour in SE-Asia from GPS measurements , 2001 .

[24]  Peter Teunissen,et al.  A canonical theory for short GPS baselines. Part IV: precision versus reliability , 1997 .

[25]  Henrik E. Thomsen Evaluation of Upper and Lower Bounds on the Success Probability , 2000 .

[26]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[27]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[28]  J.-P. Berthias,et al.  Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination , 2007 .

[29]  S. R. Cunha,et al.  Precise Positioning by Phase Processing of Sound Waves , 2007, IEEE Transactions on Signal Processing.

[30]  Boudewijn Ambrosius,et al.  Angular velocities of Nubia and Somalia from continuous GPS data: implications on present-day relative kinematics , 2004 .

[31]  Paul Collins,et al.  Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing , 2010 .

[32]  Kristine M. Larson,et al.  Global Positioning System, Theory and Practice, 5th Edition , 2001 .

[33]  W. Mayr Experiences with Light Weight Fixed Wing Aerial Mapping UAVs , 2014 .

[34]  P. Teunissen Least-squares estimation of the integer GPS ambiguities , 1993 .

[35]  Yehuda Bock,et al.  Medium Distance GPS Measurements , 1998 .

[36]  Peter Teunissen,et al.  GPS for geodesy , 1996 .

[37]  Dennis Odijk,et al.  Ambiguity Dilution of Precision: Definition, Properties and Application , 1997 .

[38]  Steffen Schön,et al.  Atmospheric turbulence theory applied to GPS carrier-phase data , 2008 .

[39]  M. Kayton,et al.  Global positioning system: signals, measurements, and performance [Book Review] , 2002, IEEE Aerospace and Electronic Systems Magazine.

[40]  O. Montenbruck,et al.  Real-Time Navigation of Formation-Flying Spacecraft Using Global-Positioning-System Measurements , 2005 .

[41]  Peter Teunissen,et al.  The invertible GPS ambiguity transformations , 1995 .

[42]  O. Montenbruck,et al.  Real-Time Navigation of Formation-Flying Spacecraft , 2005 .

[43]  Bofeng Li,et al.  High Dimensional Integer Ambiguity Resolution: A First Comparison between LAMBDA and Bernese , 2011, Journal of Navigation.

[44]  Peter J. Buist,et al.  Attitude determination of LEO satellites using an array of GNSS sensors , 2012, 2012 15th International Conference on Information Fusion.

[45]  Oliver Montenbruck,et al.  Precise GRACE baseline determination using GPS , 2005 .

[46]  Peter Teunissen,et al.  Multivariate Bootstrapped Relative Positioning of Spacecraft Using GPS L1/Galileo E1 Signals , 2011 .

[47]  Thomas Hobiger,et al.  Integer phase ambiguity estimation in next-generation geodetic Very Long Baseline Interferometry , 2009 .

[48]  Harald Schuh,et al.  Using the Global Navigation Satellite System and satellite altimetry for combined Global Ionosphere Maps , 2008 .

[49]  K. Kondo Optimal Success/Error Rate and Its Calculation in Resolution of Integer Ambiguities in Carrier Phase Positioning of Global Positioning System (GPS) and Global Navigation Satellite System (GNSS) , 2003 .

[50]  Sigurd Huber,et al.  The TanDEM-X mission: Overview and interferometric performance , 2009, 2009 European Radar Conference (EuRAD).

[51]  Hans-Jürgen Euler,et al.  Improvement of Positioning Performance Using Standardized Network RTK Messages , 2004 .

[52]  Y. Bock,et al.  Global Positioning System Network analysis with phase ambiguity resolution applied to crustal deformation studies in California , 1989 .

[53]  X. Chang,et al.  MLAMBDA: a modified LAMBDA method for integer least-squares estimation , 2005 .

[54]  B. Hofmann-Wellenhof,et al.  Global Positioning System , 1992 .

[55]  A. Leick GPS satellite surveying , 1990 .

[56]  P. D. Jonge,et al.  The LAMBDA method for integer ambiguity estimation: implementation aspects , 1996 .

[57]  Peter Teunissen,et al.  On the integer normal distribution of the GPS ambiguities. , 1998 .

[58]  Baocheng Zhang,et al.  Single-frequency integer ambiguity resolution enabled GPS precise point positioning , 2012 .

[59]  J. Everaerts,et al.  THE USE OF UNMANNED AERIAL VEHICLES ( UAVS ) FOR REMOTE SENSING , 2008 .

[60]  Dennis Odijk,et al.  ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models , 2008 .

[61]  P. Teunissen A new method for fast carrier phase ambiguity estimation , 1994, Proceedings of 1994 IEEE Position, Location and Navigation Symposium - PLANS'94.