Deriving ultrametric tree structures from proximity data confounded by differential stimulus familiarity

This paper presents a new procedure called TREEFAM for estimating ultrametric tree structures from proximity data confounded by differential stimulus familiarity. The objective of the proposed TREEFAM procedure is to quantitatively “filter out” the effects of stimulus unfamiliarity in the estimation of an ultrametric tree. A conditional, alternating maximum likelihood procedure is formulated to simultaneously estimate an ultrametric tree, under the unobserved condition of complete stimulus familiarity, and subject-specific parameters capturing the adjustments due to differential unfamiliarity. We demonstrate the performance of the TREEFAM procedure under a variety of alternative conditions via a modest Monte Carlo experimental study. An empirical application provides evidence that the TREEFAM outperforms traditional models that ignore the effects of unfamiliarity in terms of superior tree recovery and overall goodness-of-fit.

[1]  A. Koehler,et al.  A Comparison of the Akaike and Schwarz Criteria for Selecting Model Order , 1988 .

[2]  J. W. Hutchinson,et al.  Dimensions of Consumer Expertise , 1987 .

[3]  A. C. Pereboom Some Fundamental Problems in Experimental Psychology: An Overview , 1971 .

[4]  Ramón López de Mántaras,et al.  Classification and linguistic characterization of non-deterministic data , 1983, Pattern Recognit. Lett..

[5]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[6]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[7]  James Jaccard,et al.  The effects of incomplete information on the formation of attitudes toward behavioral alternatives. , 1988 .

[8]  Robert M. Judish,et al.  Applied Linear Statistical Methods , 1984 .

[9]  H. Bozdogan Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions , 1987 .

[10]  R. Meyer A Model of Multiattribute Judgments under Attribute Uncertainty and Informational Constraint , 1981 .

[11]  J. Ramsay Maximum likelihood estimation in multidimensional scaling , 1977 .

[12]  Niels Blunch,et al.  Paul E. Green and Donald S. Tull: Research for Marketing Decisions . Prentice-Hall, Inc., Englewood Cliffs, N. ,J. 1966. , 1967 .

[13]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[14]  Bruce L. Stern,et al.  Research for Marketing Decisions , 1978 .

[15]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[16]  Donald F. Morrison,et al.  Applied linear statistical methods , 1983 .

[17]  V. Bruce,et al.  Recognizing familiar faces: the role of distinctiveness and familiarity. , 1986, Canadian journal of psychology.

[18]  C. J. Jardine,et al.  The structure and construction of taxonomic hierarchies , 1967 .

[19]  Rabikar Chatterjee,et al.  Accommodating the effects of brand unfamiliarity in the multidimensional scaling of preference data , 1992 .

[20]  J. Chandon,et al.  Construction de l'ultramétrique la plus proche d'une dissimilarité au sens des moindres carrés , 1980 .

[21]  Paul Slovic,et al.  Dimensional Commensurability and Cue Utilization in Comparative Judgment. , 1974 .

[22]  Wayne S. DeSarbo,et al.  A nonspatial methodology for the analysis of two-way proximity data incorporating the distance-density hypothesis , 1990 .

[23]  J. Frank Yates,et al.  Evaluation of Partially Described Multiattribute Options , 1978 .

[24]  A. G. Goldstein,et al.  Memory for Faces and Schema Theory , 1980 .

[25]  Frank R. Kardes,et al.  The role of prior knowledge and missing information in multiattribute evaluation , 1992 .

[26]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[27]  A. Tversky Features of Similarity , 1977 .

[28]  J. Hartigan REPRESENTATION OF SIMILARITY MATRICES BY TREES , 1967 .

[29]  T. Yamagishi,et al.  Initial impression versus missing information as explanations of the set-size effect. , 1983 .

[30]  Geert De Soete,et al.  A least squares algorithm for fitting an ultrametric tree to a dissimilarity matrix , 1984, Pattern Recognit. Lett..

[31]  J. Boster Natural sources of internal category structure: Typicality, familiarity, and similarity of birds , 1988, Memory & cognition.

[32]  H. Akaike A new look at the statistical model identification , 1974 .