Force field calculations (MM3) on glyoxal, quinones, and related compounds

A general force field type of calculation has been devised in connection with MM3 to treat 1,2‐ and 1,4‐diketones, both when they are not conjugated (as in derivatives of glyoxal) and when they are conjugated (as in derivatives of ortho‐ and para‐benzoquinone). The molecular structures, moments of inertia, dipole moments, and vibrational spectra have been examined for about 15 compounds, some in several conformations. Ab initio calculations (6‐31G*) have been used to determine quantities that have not been previously defined by experiment. In general, the force field permits the calculation of the structures with high accuracy, and the spectroscopic and conformational energy data with fair accuracy. © 1994 by John Wiley & Sons, Inc.

[1]  Yonezo Morino,et al.  Average structures of butadiene, acrolein, and glyoxal determined by gas electron diffraction and spectroscopy , 1968 .

[2]  J. Tyrrell Internal rotation in biacetyl. A theoretical study , 1979 .

[3]  J. Gaultier,et al.  Structure de l'a-naphtoquinone , 1965 .

[4]  J. Trotter A three-dimensional analysis of the crystal structure of p-benzoquinone , 1960 .

[5]  K. Hedberg,et al.  Reinvestigation of the molecular structure of gaseous p‐benzoquinone by electron diffraction , 1973 .

[6]  G. Henderson,et al.  Intramolecular torsional potential and dielectric properties of 2,3-butanedione , 1976 .

[7]  S. Yang,et al.  Crystal and molecular structure of biacetyl (2,3-butanedione), (H3CCO)2, at -12 and -100.degree.C , 1983 .

[8]  D. Rabinovich,et al.  Structure and electron density of 2,5‐dimethyl‐p‐benzoquinone , 1967 .

[9]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[10]  D. Ramsay,et al.  Laser-Excited Emission from Glyoxal and Its Deuterated Derivatives , 1973 .

[11]  A. Engdahl,et al.  Infrared spectrum of cis-glyoxal , 1988 .

[12]  G. Scuseria,et al.  The unimolecular triple dissociation of glyoxal: transition-state structures optimized by configuration interaction and coupled cluster methods , 1989 .

[13]  C. Bock,et al.  An ab initio prediction of structures and vibrational frequencies of high-energy rotamers of glyoxal and acrolein , 1988 .

[14]  K. Hedberg,et al.  An electron-diffraction investigation of the molecular structure of gaseous 2,3-butanedione (biacetyl) at 228 and 525.degree.C , 1979 .

[15]  M. Fink,et al.  On an electron diffraction study of the structures of anthraquinone and anthracene , 1981 .

[16]  S. Brown,et al.  Vibrational spectra and structure of biacetyl , 1971 .

[17]  Y. L. Page,et al.  The structure of 2,2',4,4',6,6'‐hexa‐tert‐butylbenzil , 1981 .

[18]  Fanbing Li,et al.  Molecular mechanics (MM3) calculations on conjugated hydrocarbons , 1990 .

[19]  J. Durig,et al.  Microwave Spectrum of cis‐Glyoxal , 1972 .

[20]  W. E. Bucy,et al.  Torsional Potential Function of Glyoxal , 1975 .

[21]  A. Bauder,et al.  Rotational spectra of s‐trans and s‐cis glyoxal‐d1 (CHO–CDO) observed by microwave Fourier transform spectroscopy , 1987 .

[22]  J. Durig,et al.  Microwave spectra of cis-glyoxal-d/1/ and cis-glyoxal-d/2/ , 1976 .

[23]  J. D. Cox,et al.  Thermochemistry of organic and organometallic compounds , 1970 .

[24]  M. Sundaralingam,et al.  The crystal and molecular structure of 2,2'-di-(1,4-naphthoquinone) , 1969 .

[25]  Norman L. Allinger,et al.  Molecular mechanics calculations (MM3) on conjugated ketones , 1992 .