Global versus local quantum correlations in the Grover search algorithm
暂无分享,去创建一个
Ahmed Farouk | C. H. Raymond Ooi | M. S. Alkhambashi | J. Batle | S. Abdalla | J. Batle | A. Farouk | M. Alkhambashi | S. Abdalla | C. Ooi
[1] J. Latorre,et al. Universality of entanglement and quantum-computation complexity , 2003, quant-ph/0311017.
[2] M. Casas,et al. Nonlocality and entanglement in the XY model , 2010, 1007.0983.
[3] A. Shimony,et al. Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .
[4] J. Batle,et al. Nonlocality and entanglement in qubit systems , 2011, 1102.4653.
[5] B. Tsirelson. Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .
[6] Hoi-Kwong Lo,et al. Introduction to Quantum Computation Information , 2002 .
[7] Yaakov S. Weinstein,et al. Matrix-element distributions as a signature of entanglement generation , 2005 .
[8] A. Shimizu,et al. Macroscopic entanglement in Quantum Computation , 2005, quant-ph/0505057.
[9] Heng Fan,et al. Correlations in the Grover search , 2009, 0904.2703.
[10] Ardehali. Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[11] W Dür,et al. Spin gases: quantum entanglement driven by classical kinematics. , 2005, Physical review letters.
[12] Svetlichny,et al. Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.
[13] Colin P. Williams,et al. Explorations in quantum computing , 1997 .
[14] Lov K. Grover. Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.
[15] R. Jozsa,et al. Quantum Computation and Shor's Factoring Algorithm , 1996 .
[16] R. Cleve,et al. HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.
[17] William J. Munro,et al. Entanglement and its role in Shor's algorithm , 2006, Quantum Inf. Comput..
[18] H. Briegel,et al. Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.
[19] A. V. Belinskii,et al. Interference of light and Bell's theorem , 1993 .
[20] V. Scarani,et al. Bell-type inequalities to detect true n-body nonseparability. , 2002, Physical review letters.
[21] Kiel T. Williams,et al. Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.
[22] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[23] V. Scarani,et al. Nonlocality of cluster states of qubits , 2004, quant-ph/0405119.
[24] D. Gottesman. Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.
[25] B. Tsirelson. Some results and problems on quan-tum Bell-type inequalities , 1993 .
[26] Florian Mintert,et al. Measuring multipartite concurrence with a single factorizable observable. , 2006, Physical review letters.
[27] M. Seevinck,et al. Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. , 2002, Physical review letters.
[28] D. Meyer,et al. Global entanglement in multiparticle systems , 2001, quant-ph/0108104.
[29] Zhiwei Zhou,et al. Multipartite entanglement in Grover’s search algorithm , 2012, Natural Computing.
[30] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[31] Colin P. Williams. Quantum Computing and Quantum Communications , 1999, Lecture Notes in Computer Science.
[32] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[33] W. Wootters,et al. Distributed Entanglement , 1999, quant-ph/9907047.
[34] N. Gisin,et al. A relevant two qubit Bell inequality inequivalent to the CHSH inequality , 2003, quant-ph/0306129.
[35] Andreas Buchleitner,et al. Decoherence and multipartite entanglement. , 2004, Physical review letters.
[36] C. Macchiavello,et al. Scale invariance of entanglement dynamics in Grover's quantum search algorithm , 2013 .
[37] V. Subrahmanyam,et al. Multipartite entanglement in a one-dimensional time-dependent Ising model , 2004 .
[38] A. J. Scott. Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions , 2003, quant-ph/0310137.
[39] Gavin K. Brennen. An observable measure of entanglement for pure states of multi-qubit systems , 2003, Quantum Inf. Comput..
[40] G. Doolen,et al. Introduction to Quantum Computers , 1998 .
[41] Dagomir Kaszlikowski,et al. Entanglement in the Grover search algorithm , 2005 .
[42] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[43] S. Stepney,et al. Searching for highly entangled multi-qubit states , 2005 .
[44] Charles H. Bennett,et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.
[45] B. Toner. Monogamy of non-local quantum correlations , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[46] Subhashish Banerjee,et al. Entanglement in the Grover's Search Algorithm , 2013, ArXiv.
[47] A. Galindo,et al. Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.
[48] H. Bechmann-Pasquinucci,et al. Bell inequality, Bell states and maximally entangled states for n qubits , 1998, quant-ph/9804045.
[49] M. Cao,et al. Thermal entanglement between alternate qubits of a four-qubit heisenberg XX chain in a magnetic field , 2005 .
[50] Yaakov S Weinstein,et al. Entanglement generation of nearly random operators. , 2005, Physical review letters.
[51] O. Biham,et al. Entangled quantum states generated by Shor's factoring algorithm (6 pages) , 2005, quant-ph/0510042.