A Student's Guide to Data and Error Analysis

Part I. Data and Error Analysis: 1. Introduction 2. The presentation of physical quantities with their inaccuracies 3. Errors: classification and propagation 4. Probability distributions 5. Processing of experimental data 6. Graphical handling of data with errors 7. Fitting functions to data 8. Back to Bayes: knowledge as a probability distribution Answers to exercises Part II. Appendices: A1. Combining uncertainties A2. Systematic deviations due to random errors A3. Characteristic function A4. From binomial to normal distributions A5. Central limit theorem A6. Estimation of the varience A7. Standard deviation of the mean A8. Weight factors when variances are not equal A9. Least squares fitting Part III. Python Codes Part IV. Scientific Data: Chi-squared distribution F-distribution Normal distribution Physical constants Probability distributions Student's t-distribution Units.

[1]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[2]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[3]  L. Joseph,et al.  Bayesian Statistics: An Introduction , 1989 .

[4]  Joyce Snell,et al.  6. Alternative Methods of Regression , 1996 .

[5]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[6]  Raymond A. Dwek,et al.  Principles and Problems in Physical Chemistry for Biochemists , 1974 .

[7]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[8]  R. H. Myers,et al.  Probability and Statistics for Engineers and Scientists , 1978 .

[9]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[10]  David R. Cox,et al.  PRINCIPLES OF STATISTICAL INFERENCE , 2017 .

[11]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[12]  W. Beyer CRC Standard Probability And Statistics Tables and Formulae , 1990 .

[13]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[14]  Roger Barlow,et al.  Statistics : a guide to the use of statistical methods in thephysical sciences , 1989 .

[15]  H. Jeffreys,et al.  Theory of probability , 1896 .

[16]  H. Berendsen Simulating the Physical World , 2004 .

[17]  B. Hess Determining the shear viscosity of model liquids from molecular dynamics simulations , 2002 .

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[19]  A. J. Stam,et al.  Estimation of statistical errors in molecular simulation calculations , 1986 .

[20]  B. Gebhard Fads and Fallacies in the Name of Science , 1958 .

[21]  H. Herne,et al.  How to Lie with Statistics , 1973 .

[22]  Mark D. Semon,et al.  POSTUSE REVIEW: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1982 .

[23]  Brian Skyrms,et al.  Choice And Chance , 1966 .

[24]  Balgobin Nandram,et al.  Applied Statistics for Engineers and Scientists , 2005 .

[25]  Student,et al.  THE PROBABLE ERROR OF A MEAN , 1908 .

[26]  A. Hald A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935 , 2006 .

[27]  K. Wolter Introduction to Variance Estimation , 1985 .