On the stabilization of some nonlinear control systems: results, tools, and applications

It has been proved by Brockett that, contrary to the case of linear control systems, many controllable nonlinear control systems cannot be stabilized by means of stationary continuous feedback laws. In this paper we give results showing that many controllable nonlinear control systems can be stabilized by means of time-varying continuous feedback laws and that many controllable and observable nonlinear control systems can be stabilized by means of time-varying dynamic continuous feedback laws. We show the interest of time-varying feedback laws for robustness with respect to measurement disturbances. We also present methods to design stabilizing feedback laws and we give applications to satellites and fluid mechanics.

[1]  Jean-Michel Coron,et al.  Explicit feedbacks stabilizing the attitude of a rigid spacecraft with two control torques , 1996, Autom..

[2]  Eduardo Sontag Universal nonsingular controls , 1993 .

[3]  Bertina Ho-Mock-Qai Simultaneous and Robust Stabilization of Nonlinear Systems by Means of Continuous and Time-Varying Feedback , 1996 .

[4]  H. Sussmann A general theorem on local controllability , 1987 .

[5]  Eduardo D. Sontag,et al.  Finite-dimensional open-loop control generators for non-linear systems , 1988 .

[6]  A. Fursikov,et al.  Exact boundary zero controllability of three-dimensional Navier-Stokes equations , 1995 .

[7]  Daniel E. Koditschek,et al.  Adaptive Techniques for Mechanical Systems , 1987 .

[8]  Thomas Kailath,et al.  Linear Systems , 1980 .

[9]  Andrei V. Fursikov,et al.  On exact boundary zero-controlability of two-dimensional Navier-Stokes equations , 1994 .

[10]  T. Horsin,et al.  On the controllability of the burger equation , 1998 .

[11]  Zhong-Ping Jiang,et al.  Time-varying feedback stabilization of the attitude of a rigid spacecraft with two controls , 1994 .

[12]  Jean-Michel Coron,et al.  On the stabilization of controllable and observable systems by an output feedback law , 1994, Math. Control. Signals Syst..

[13]  E. Ryan On Brockett's Condition for Smooth Stabilizability and its Necessity in a Context of Nonsmooth Feedback , 1994 .

[14]  J. Coron,et al.  Adding an integrator for the stabilization problem , 1991 .

[15]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[16]  Eduardo Sontag,et al.  Remarks on continuous feedback , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[17]  R. Lozano-Leal Robust Adaptive Regulation without Persistent Excitation , 1989, 1989 American Control Conference.

[18]  Jean-Michel Coron,et al.  A Remark on the Design of Time-Varying Stabilizing Feedback Laws for Controllable Systems without Drift , 1992 .

[19]  Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid , 1980 .

[20]  H. Hermes Control systems which generate decomposable Lie algebras , 1982 .

[21]  Jean-Michel Coron,et al.  Global Exact Controllability of the 2D Navier-Stokes Equations on a Manifold without boundary , 1996 .

[22]  Jean-Baptiste Pomet Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .

[23]  G. Whitehead,et al.  Elements of Homotopy Theory , 1978 .

[24]  J. Coron LINKS BETWEEN LOCAL CONTROLLABILITY AND LOCAL CONTINUOUS STABILIZATION , 1992 .

[25]  Pramod P. Khargonekar,et al.  Strong, simultaneous, and reliable stabilization of finite-dimensional linear time-varying plants , 1988 .

[26]  J. Baillieul,et al.  Stabilizability and stabilization of a rotating body-beam system with torque control , 1993, IEEE Trans. Autom. Control..

[27]  David Q. Mayne,et al.  Nonlinear control systems design, 1995 : a postprint volume from the 3rd IFAC Symposium, Tahoe City, California, USA, 25-28 June 1995 , 1995 .

[28]  Wei-Liang Chow Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .

[29]  El Yazid Kerai Analysis of Small Time Local Controllability of the Rigid Body Model , 1995 .

[30]  J. Coron,et al.  Lyapunov design of stabilizing controllers for cascaded systems , 1991 .

[31]  Andrew J. Majda,et al.  Vorticity and the mathematical theory of incompressible fluid flow , 1986 .

[32]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[33]  J. L. Lions,et al.  Exact Controllability for Distributed Systems. Some Trends and Some Problems , 1991 .

[34]  Aristotle Arapostathis,et al.  Remarks on smooth feedback stabilization of nonlinear systems , 1988 .

[35]  Miroslav Krstic,et al.  Stabilization of Nonlinear Uncertain Systems , 1998 .

[36]  J. Coron Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels , 1993 .

[37]  W. Dayawansa,et al.  Two Examples of Stabilizable Second Order Systems , 1989 .

[38]  L. Rosier Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .

[39]  Eduardo Sontag Remarks on stabilization and input-to-state stability , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[40]  J. Coron On the stabilization in finite time of locally controllable systems by means of continuous time-vary , 1995 .

[41]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[42]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[43]  V. Jurdjevic,et al.  Controllability and stability , 1978 .

[44]  J. Lions Exact controllability, stabilization and perturbations for distributed systems , 1988 .

[45]  R. Freeman Global internal stabilizability does not imply global external stabilizability for small sensor disturbances , 1995, IEEE Trans. Autom. Control..

[46]  J. L. Massera Contributions to Stability Theory , 1956 .

[47]  Eduardo D. Sontag,et al.  Conditions for Abstract Nonlinear Regulation , 1981, Inf. Control..

[48]  ON ODD-ORDER NECESSARY CONDITIONS FOR OPTIMALITY IN A TIME-OPTIMAL CONTROL PROBLEM FOR SYSTEMS LINEAR IN THE CONTROL , 1991 .

[49]  John Tsinias,et al.  Sufficient lyapunov-like conditions for stabilization , 1989, Math. Control. Signals Syst..

[50]  Alberto Isidori,et al.  Trends in Control , 1995 .

[51]  A. Isidori Nonlinear Control Systems , 1985 .

[52]  Enrique Fernández-Cara,et al.  A Result Concerning Controllability for the Navier-Stokes Equations , 1995 .

[53]  Andrei V. Fursikov,et al.  Local exact controllability of the Navier-Stokes equations , 1996 .

[54]  G. Conte,et al.  New Trends in Systems Theory , 1991 .

[55]  L. Silverman,et al.  Controllability and Observability in Time-Variable Linear Systems , 1967 .

[56]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[57]  Oleg Yu. Imanuvilov,et al.  On Controllability of Certain Systems Simulating a Fluid Flow , 1995 .

[58]  John Baillieul,et al.  Constrained relative motions in rotational mechanics , 1991 .

[59]  Z. Artstein Stabilization with relaxed controls , 1983 .

[60]  H. Sussmann A Sufficient Condition for Local Controllability , 1978 .

[61]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[62]  Newton Diagrams and Tangent Cones to Attainable Sets , 1991 .

[63]  C. Samson,et al.  Time-varying exponential stabilization of a rigid spacecraft with two control torques , 1997, IEEE Trans. Autom. Control..

[64]  Jean-Baptiste Pomet,et al.  Time-varying exponential stabilization of nonholonomic systems in power form , 1994 .

[65]  R. Murray,et al.  Nonholonomic systems and exponential convergence: some analysis tools , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[66]  J. Coron Linearized Control Systems and Applications to Smooth Stabilization , 1994 .

[67]  Eduardo D. Sontag,et al.  Universal nonsingular controls: Systems and control letters 19 (1992) 221–224 , 1993 .

[68]  J. Baillieul,et al.  Rotational elastic dynamics , 1987 .

[69]  Dirk Aeyels,et al.  Pole assignment for linear time-invariant systems by periodic memoryless output feedback , 1992, Autom..

[70]  Aristotle Arapostathis,et al.  On the controllability of piecewise-linear hypersurface systems , 1987 .

[71]  H. Hermes Discontinuous vector fields and feedback control , 1966 .

[72]  Christopher I. Byrnes,et al.  On the attitude stabilization of rigid spacecraft , 1991, Autom..

[73]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[74]  Yu. S. Ledyaev,et al.  Asymptotic Stability and Smooth Lyapunov Functions , 1998 .

[75]  J. Coron A necessary condition for feedback stabilization , 1990 .

[76]  J. Coron On the controllability of 2-D incompressible perfect fluids , 1996 .

[77]  Sufficient conditions for the simultaneous stabilizability of nonlinear systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[78]  Brigitte d'Andréa-Novel,et al.  Stabilization of a rotating body beam without damping , 1998, IEEE Trans. Autom. Control..

[79]  Eduardo Sontag Further facts about input to state stabilization , 1990 .

[80]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[81]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[82]  Wei-Liang Chow Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung , 1940 .

[83]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .

[84]  E. A. Roth The gaussian form of the variation-of-parameter equations formulated in equinoctial elements—Applications: Airdrag and radiation pressure , 1985 .

[85]  M. Vidyasagar Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability , 1980 .

[86]  Claude Samson,et al.  Velocity and torque feedback control of a nonholonomic cart , 1991 .

[87]  Olivier Glass Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3 , 1997 .

[88]  Sussmann Nonlinear Controllability and Optimal Control , 1990 .

[89]  M. Kawski Stabilization of nonlinear systems in the plane , 1989 .

[90]  Anthony M. Bloch,et al.  On The Dynamics of Rotating Elastic Beams , 1991 .

[91]  J. Zabczyk Some comments on stabilizability , 1989 .

[92]  M. Gromov,et al.  Partial Differential Relations , 1986 .

[93]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[94]  C. Fabre,et al.  Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems , 1996 .

[95]  H. Hermes Smooth homogeneous asymptotically stabilizing feedback controls , 1997 .

[96]  L. Praly,et al.  Adding integrations, saturated controls, and stabilization for feedforward systems , 1996, IEEE Trans. Autom. Control..

[97]  A. Isidori,et al.  New results and examples in nonlinear feedback stabilization , 1989 .

[98]  Andrew R. Teel,et al.  Feedback Stabilization of Nonlinear Systems: Sufficient Conditions and Lyapunov and Input-output Techniques , 1995 .

[99]  Enrique Fernández-Cara,et al.  On a conjecture due to J. L. Lions , 1993 .

[100]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[101]  O. Imanuvilov,et al.  On exact controllability for the Navier-Stokes equations , 1998 .

[102]  Shih-Ho Wang,et al.  Stabilization of decentralized control systems via time-varying controllers , 1982 .

[103]  H. Sussmann Lie Brackets and Local Controllability: A Sufficient Condition for Scalar-Input Systems , 1983 .

[104]  Renato Spigler Applied and Industrial Mathematics , 1899 .

[105]  H. Sussmann Subanalytic sets and feedback control , 1979 .

[106]  R. Bianchini,et al.  Sufficient conditions of local controllability , 1986, 1986 25th IEEE Conference on Decision and Control.

[107]  P. Crouch,et al.  Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models , 1984 .

[108]  Yu. S. Ledyaev,et al.  A Lyapunov characterization of robust stabilization , 1999 .

[109]  Eduardo Sontag Control of systems without drift via generic loops , 1995, IEEE Trans. Autom. Control..

[110]  J. Coron,et al.  On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions , 1996 .

[111]  D. Jacobson Extensions of Linear-Quadratic Control, Optimization and Matrix Theory , 1977 .

[112]  Randy A. Freeman,et al.  Time-varying feedback for the global stabilization of nonlinear systems with measurement disturbances , 1997, 1997 European Control Conference (ECC).