The analysis of dependence for three ways contingency tables with ordinal variables: A case study of patient satisfaction data

For many questionnaires and surveys in the marketing, business, and health disciplines, items often involve ordinal scales (such as the Likert scale and rating scale) that are associated in sometimes complex ways. Techniques such as classical correspondence analysis provide a simple graphical means of describing the nature of the association. However, the procedure does not allow the researcher to specify how one item may be associated with another, nor does the analysis allow for the ordinal structure of the scales to be reflected. This article presents a graphical approach that can help the researcher to study in depth the complex association of the items and reflect the structure of the items. We will demonstrate the applicability of this approach using data collected from a study that involves identifying major factors that influence the level of patient satisfaction in a Neapolitan hospital.

[1]  J. Oksanen A note on the occasional instability of detrending in correspondence analysis , 1988, Vegetatio.

[2]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[3]  Pietro Amenta,et al.  Catanova for Two-Way Contingency Tables with Ordinal Variables Using Orthogonal Polynomials , 2005 .

[4]  An Approach to Marketing Data Analysis: The Forced Classification Procedure of Dual Scaling , 1990 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[7]  Jordan J. Louviere,et al.  Multiple Correspondence Analysis of Multiple Choice Experiment Data , 1990 .

[8]  J. Oksanen Problems of joint display of species and site scores in correspondence analysis , 1987, Vegetatio.

[9]  B. L. Roux,et al.  Multiple Correspondence Analysis , 2009 .

[10]  H. Abdi,et al.  Multiple Correspondence Analysis , 2006 .

[11]  A. Parasuraman,et al.  SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. , 1988 .

[12]  Phillip L. Emerson,et al.  Numerical Construction of Orthogonal Polynomials from a General Recurrence Formula , 1968 .

[13]  M. Hill,et al.  Detrended correspondence analysis: an improved ordination technique , 1980 .

[14]  Biagio Simonetti,et al.  Partitioning a non-symmetric measure of association for three-way contingency tables , 2007 .

[15]  M. Hill,et al.  Detrended correspondence analysis: An improved ordination technique , 2004, Vegetatio.

[16]  Michael Greenacre,et al.  Dual scaling and correspondence analysis of preferences, paired comparisons and ratings , 2002 .

[17]  Eric J. Beh,et al.  Theory & Methods: Partitioning Pearson’s Chi‐Squared Statistic for a Completely Ordered Three‐Way Contingency Table , 1998 .

[18]  Peter J. Danaher,et al.  A Canonical Expansion Model for Multivariate Media Exposure Distributions: A Generalization of the “Duplication of Viewing Law” , 1991 .

[19]  Paul E. Green,et al.  An INDSCAL-Based Approach to Multiple Correspondence Analysis , 1988 .

[20]  A. Parasuraman,et al.  A Conceptual Model of Service Quality and Its Implications for Future Research , 1985 .

[21]  George R. Franke,et al.  Correspondence Analysis: Graphical Representation of Categorical Data in Marketing Research , 1986 .

[22]  Eric J. Beh,et al.  Simple Correspondence Analysis of Ordinal Cross‐Classifications Using Orthogonal Polynomials , 1997 .

[23]  Eric J. Beh,et al.  A non-iterative alternative to ordinal Log-Linear models , 2004, Adv. Decis. Sci..

[24]  E. Beh,et al.  Corrigendum: AN EVALUATION OF NON‐ITERATIVE METHODS FOR ESTIMATING THE LINEAR‐BY‐LINEAR PARAMETER OF ORDINAL LOG‐LINEAR MODELS , 2009 .

[25]  S. Ferson,et al.  Putting Things in Order: A Critique of Detrended Correspondence Analysis , 1987, The American Naturalist.

[26]  B. Margolin,et al.  An Analysis of Variance for Categorical Data , 1971 .

[27]  Eric J. Beh,et al.  Simple Correspondence Analysis: A Bibliographic Review , 2004 .

[28]  Eric J. Beh,et al.  Theory & Methods: Partitioning Pearson's Chi‐squared Statistic for Singly Ordered Two‐way Contingency Tables , 2001 .

[29]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[30]  Eric J. Beh,et al.  Non-symmetric correspondence analysis with ordinal variables using orthogonal polynomials , 2007, Comput. Stat. Data Anal..

[31]  Louis N. Gray,et al.  Goodman and Kruskal's Tau b: Multiple and Partial Analogs , 1981 .

[32]  E. Beh,et al.  Theory & Methods: Partitioning Pearson’s chi‐squared statistic for a partially ordered three‐way contingency table , 1999 .

[33]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[34]  Michael T. Bendixen,et al.  A Practical Guide to the Use of Correspondence Analysis in Marketing Research , 1996 .