Covariant formulation of refracted gravity

We propose a covariant formulation of refracted gravity (RG), a classical theory of gravity based on the introduction of gravitational permittivity (GP), a monotonic function of the local mass density, in the standard Poisson equation. GP mimics dark matter (DM) phenomenology. The covariant formulation of RG (CRG) that we propose belongs to the class of scalar-tensor theories, where the scalar field $\varphi$ has a self-interaction potential $V(\varphi)=-\Xi\varphi$, with $\Xi$ a normalization constant. We show that $\varphi$ is twice the GP in the weak-field limit. Far from a spherical source of density $\rho_s(r)$, the transition between the Newtonian and the RG regime appears below the acceleration scale $a_\Xi=(2\Xi-8\pi G\rho/\varphi)^{1/2}$, with $\rho=\rho_s+\rho_{bg}$, $\rho_{bg}$ being an isotropic and homogeneous background. In the limit $2\Xi\gg 8\pi G\rho/\varphi$, we obtain $a_\Xi\sim 10^{-10}$~m~s$^{-2}$. This is comparable to the acceleration $a_0$ originally introduced in MOND. From CRG, we also derived the modified Friedmann equations for an expanding, homogeneous, and isotropic universe. We find that the same scalar field that mimics DM also drives the accelerated expansion of the Universe. From the stress-energy tensor of $\varphi$, we derived the equation of state of a redshift-dependent effective dark energy (DE) $w_{DE}=p_{DE}/\rho_{DE}$. Current observational constraints on $w_{DE}$ and distance modulus data of SNIa suggest that $\Xi$ has a comparable value to the cosmological constant $\Lambda$ in the standard model. CRG, therefore, suggests a natural explanation of the known relation $a_0\sim \Lambda^{1/2}$ and appears to describe both the dynamics of cosmic structure and the expanding Universe with a single scalar field, highlighting a possible deep connection between phenomena currently attributed to DM and DE separately.

[1]  A. Diaferio,et al.  The dynamics of three nearby E0 galaxies in refracted gravity , 2021, Astronomy & Astrophysics.

[2]  M. Bernardi,et al.  On the Presence of a Universal Acceleration Scale in Elliptical Galaxies , 2020, The Astrophysical Journal.

[3]  R. B. Barreiro,et al.  Planck 2018 results: V. CMB power spectra and likelihoods , 2020 .

[4]  A. Diaferio,et al.  Dark Matters on the Scale of Galaxies , 2020, 2007.15539.

[5]  S. McGaugh Predictions and Outcomes for the Dynamics of Rotating Galaxies , 2020, Galaxies.

[6]  A. Diaferio,et al.  Dynamics of DiskMass Survey galaxies in refracted gravity , 2020, Astronomy & Astrophysics.

[7]  M. Cadoni,et al.  Anisotropic fluid cosmology: An alternative to dark matter? , 2020, 2002.06988.

[8]  M. Milgrom The $a_0$ -- cosmology connection in MOND , 2020, 2001.09729.

[9]  A. Melchiorri,et al.  Planck evidence for a closed Universe and a possible crisis for cosmology , 2019, Nature Astronomy.

[10]  M. Kusakabe,et al.  Cosmological Solutions to the Lithium Problem , 2019, Proceedings of the 15th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG15).

[11]  L. Verde,et al.  Tensions between the early and late Universe , 2019, Nature Astronomy.

[12]  N. Frusciante,et al.  Effective field theory of dark energy: A review , 2019, 1907.03150.

[13]  C. Skordis,et al.  Gravitational alternatives to dark matter with tensor mode speed equaling the speed of light , 2019, Physical Review D.

[14]  M. Cadoni,et al.  Galactic dynamics and long-range quantum gravity , 2019, Physical Review D.

[15]  A. Riess,et al.  Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.

[16]  I. Quirós Selected topics in scalar–tensor theories and beyond , 2019, International Journal of Modern Physics D.

[17]  Tsutomu Kobayashi Horndeski theory and beyond: a review , 2019, Reports on progress in physics. Physical Society.

[18]  A. Nicola,et al.  Cosmological parameter constraints for Horndeski scalar-tensor gravity , 2018, Physical Review D.

[19]  J. Schombert,et al.  Presence of a fundamental acceleration scale in galaxies , 2018, Nature Astronomy.

[20]  J. Khoury,et al.  Unified superfluid dark sector , 2018, Quantum Theory and Symmetries.

[21]  S. Tsujikawa,et al.  Dark energy in Horndeski theories after GW170817: A review , 2018, International Journal of Modern Physics D.

[22]  R. R. Cuzinatto,et al.  New scalar field quartessence , 2018, Journal of Cosmology and Astroparticle Physics.

[23]  C. A. Oxborrow,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[24]  R. B. Barreiro,et al.  Planck2018 results , 2020, Astronomy & Astrophysics.

[25]  Shinji Tsujikawa,et al.  Dark Energy: Theory and Observations , 2018 .

[26]  A. Giusti,et al.  Emergence of a dark force in corpuscular gravity , 2018, 1801.10374.

[27]  S. Carneiro Can the cosmological dark sector be modeled by a single scalar field? , 2018, General Relativity and Gravitation.

[28]  M. Buckley,et al.  Gravitational probes of dark matter physics , 2017, Physics Reports.

[29]  A. Diaferio,et al.  Conformal gravity: light deflection revisited and the galactic rotation curve failure , 2017, Classical and Quantum Gravity.

[30]  B. Jain,et al.  Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. , 2017, Physical review letters.

[31]  F. Vernizzi,et al.  Dark Energy after GW170817 and GRB170817A. , 2017, Physical review letters.

[32]  Q. Yuan,et al.  The GW170817/GRB 170817A/AT 2017gfo Association: Some Implications for Physics and Astrophysics , 2017, 1710.05805.

[33]  A. Giusti,et al.  Effective fluid description of the dark universe , 2017, 1707.09945.

[34]  M. Martinelli,et al.  Does quartessence ease cosmic tensions? , 2017, Physics of the Dark Universe.

[35]  C. Skordis,et al.  Cosmology of the Galileon extension of Bekenstein's theory of relativistic modified Newtonian dynamics , 2017, 1702.00683.

[36]  L. Heisenberg,et al.  Dipolar Dark Matter as an Effective Field Theory , 2017, 1701.07747.

[37]  E. Verlinde Emergent Gravity and the Dark Universe , 2016, 1611.02269.

[38]  J. Schombert,et al.  Radial Acceleration Relation in Rotationally Supported Galaxies. , 2016, Physical review letters.

[39]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[40]  Shaun A. Thomas,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living Reviews in Relativity.

[41]  I. Quirós,et al.  Brans–Dicke Galileon and the variational principle , 2016, 1605.00326.

[42]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[43]  M. Raveri Are cosmological data sets consistent with each other within the $\Lambda$ cold dark matter model? , 2016 .

[44]  E. Papantonopoulos,et al.  Modified Brans–Dicke cosmology with matter-scalar field interaction , 2016, 1602.02687.

[45]  Glenn D. Starkman,et al.  CMB anomalies after Planck , 2015, 1510.07929.

[46]  J. Khoury,et al.  Theory of dark matter superfluidity , 2015, 1507.01019.

[47]  B. Fields,et al.  Big bang nucleosynthesis: Present status , 2015, 1505.01076.

[48]  Antonio Padilla Lectures on the Cosmological Constant Problem , 2015, 1502.05296.

[49]  T. Padmanabhan,et al.  Emergent Gravity Paradigm: Recent Progress , 2014, 1410.6285.

[50]  Mark Trodden,et al.  Beyond the Cosmological Standard Model , 2014, 1407.0059.

[51]  M. Milgrom MOND theory , 2014, 1404.7661.

[52]  M. Szydłowski,et al.  Dynamics and cosmological constraints on Brans-Dicke cosmology , 2014, 1404.7112.

[53]  F. Vernizzi,et al.  New class of consistent scalar-tensor theories. , 2014, Physical review letters.

[54]  A. Connolly,et al.  Growth of cosmic structure: Probing dark energy beyond expansion , 2013, 1309.5385.

[55]  A. Popolo,et al.  Non-baryonic dark matter in cosmology , 2013, 1305.0456.

[56]  Xuelei Chen,et al.  Constraints on the Brans-Dicke gravity theory with the Planck data , 2013, 1305.0055.

[57]  C. Skordis,et al.  Cosmological constraints on Brans-Dicke theory. , 2013, Physical review letters.

[58]  P. Kroupa The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology , 2012, Publications of the Astronomical Society of Australia.

[59]  B. Famaey,et al.  Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions , 2011, Living Reviews in Relativity.

[60]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[61]  L. Perivolaropoulos,et al.  Dark energy and matter perturbations in scalar-tensor theories of gravity , 2011 .

[62]  P. Mannheim Making the Case for Conformal Gravity , 2011, 1101.2186.

[63]  N. Bartolo,et al.  Unified Dark Matter Scalar Field Models , 2010, 1008.0614.

[64]  Matthew A. Bershady,et al.  THE DISKMASS SURVEY. I. OVERVIEW , 2010, 1004.4816.

[65]  T. Kitching,et al.  Measuring unified dark matter with 3D cosmic shear , 2010, 1002.4740.

[66]  S. Matarrese,et al.  Weak lensing signal in unified dark matter models , 2009, 0902.4204.

[67]  A. Diaferio,et al.  X‐ray clusters of galaxies in conformal gravity , 2008, 0808.3707.

[68]  N. Bartolo,et al.  How the scalar field of unified dark matter models can cluster , 2008, 0807.1020.

[69]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[70]  L. Amendola,et al.  Observational constraints on the linear fluctuation growth rate , 2007, 0707.2686.

[71]  C. Bender,et al.  No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model. , 2007, Physical review letters.

[72]  D. Clowe,et al.  A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.

[73]  K. Horne X‐ray gas in the galaxy cluster Abell 2029: conformal gravity versus dark matter , 2006 .

[74]  L. Blanchet Gravitational polarization and the phenomenology of MOND , 2006, astro-ph/0605637.

[75]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[76]  S. Capozziello,et al.  Dark Energy: the equation of state description versus scalar-tensor or modified gravity , 2005, hep-th/0512118.

[77]  C. Baccigalupi,et al.  Scaling solutions in scalar–tensor cosmologies , 2005, astro-ph/0508586.

[78]  Fengquan Wu,et al.  New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter , 2004, astro-ph/0411221.

[79]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[80]  Valerio Faraoni,et al.  Cosmology in Scalar-Tensor Gravity , 2004 .

[81]  A. Aguirre Alternatives to Dark Matter ( , 2003, astro-ph/0310572.

[82]  J. Khoury,et al.  Chameleon Cosmology , 2003, astro-ph/0309411.

[83]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[84]  Robert H. Sanders,et al.  Modified Newtonian dynamics as an alternative to dark matter , 2002, astro-ph/0204521.

[85]  O. Bertolami,et al.  Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification , 2002, gr-qc/0202064.

[86]  A. Sakharov Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation , 2000 .

[87]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[88]  M. Milgrom THE MODIFIED DYNAMICS AS A VACUUM EFFECT , 1998, astro-ph/9805346.

[89]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[90]  Alan D. Martin,et al.  Review of Particle Physics , 2000, Physical Review D.

[91]  P. Mannheim,et al.  Newtonian limit of conformal gravity and the lack of necessity of the second order Poisson equation , 1994 .

[92]  G. Yepes,et al.  Can Conformal Weyl Gravity Be Considered a Viable Cosmological Theory , 1993, astro-ph/9312064.

[93]  I. Antoniadis,et al.  On the cosmological constant problem , 1984 .

[94]  M. Milgrom A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis , 1983 .

[95]  M. Milgrom A Modification of the Newtonian dynamics: Implications for galaxies , 1983 .

[96]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[97]  James L. Anderson,et al.  Gravitation and Cosmology. Principles and Applications of the General Theory of Relativity. Steven Weinberg. Wiley, New York, 1972. xxx, 658 pp., illus. $18.95 , 1973 .

[98]  D. Lovelock The four-dimensionality of space and the einstein tensor , 1972 .

[99]  D. Lovelock The Einstein Tensor and Its Generalizations , 1971 .

[100]  H. Kurki-Suonio,et al.  Cosmology I , 2018 .

[101]  A. Popolo,et al.  Small Scale Problems of the Λ CDM Model : A Short Review , 2017 .

[102]  Y. Fujii,et al.  The Scalar–Tensor Theory of Gravitation: Cosmology with Λ , 2003 .

[103]  Paul J. Steinhardt,et al.  The observational case for a low-density Universe with a non-zero cosmological constant , 1995, Nature.