Some Remarks on Idempotent Nullnorms on Bounded Lattices

Nullnorms are generalizations of triangular norms (t-norms) and triangular conorms (t-conorms) with a zero element to be an arbitrary point from an arbitrary bounded lattice. In this paper, we study on the existence of idempotent nullnorms on bounded lattices. We show that there exists unique idempotent nullnorm on an arbitrary distributive bounded lattice. We prove that an idempotent nullnorm may not always exist on every bounded lattice. Furthermore, we propose the construction method to obtain idempotent nullnorms on a bounded lattice under additional assumptions on given zero element. As by-product of this method, we see that it is in existence an idempotent nullnorm on non-distributive bounded lattices.

[1]  Radko Mesiar,et al.  Nullnorms on bounded lattices , 2015, Inf. Sci..

[2]  Funda Karaçal,et al.  On the T-partial order and properties , 2014, Inf. Sci..

[3]  Józef Drewniak,et al.  Distributivity between uninorms and nullnorms , 2008, Fuzzy Sets Syst..

[4]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[5]  Joan Torrens,et al.  The modularity condition for uninorms and t-operators , 2002, Fuzzy Sets Syst..

[6]  Joan Torrens,et al.  The distributivity condition for uninorms and t-operators , 2002, Fuzzy Sets Syst..

[7]  Bernard De Baets,et al.  The functional equations of Frank and Alsina for uninorms and nullnorms , 2001, Fuzzy Sets Syst..

[8]  Funda Karaçal,et al.  Ordering based on uninorms , 2016, Inf. Sci..

[9]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[10]  Radko Mesiar,et al.  Uninorms on bounded lattices , 2015, Fuzzy Sets Syst..

[11]  Radko Mesiar,et al.  On the Relationship of Associative Compensatory operators to triangular Norms and Conorms , 1996, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[12]  Radko Mesiar,et al.  Medians and nullnorms on bounded lattices , 2016, Fuzzy Sets Syst..

[13]  Funda Karaçal,et al.  Incomparability with respect to the triangular order , 2016, Kybernetika.

[14]  R. Mesiar,et al.  ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[15]  Radko Mesiar,et al.  Different interpretations of triangular norms and related operations , 1998, Fuzzy Sets Syst..

[16]  Joan Torrens,et al.  t-Operators , 1999, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[17]  Radko Mesiar,et al.  Ordering based on implications , 2014, Inf. Sci..

[18]  Radko Mesiar,et al.  On a new class of uninorms on bounded lattices , 2016, Inf. Sci..

[19]  Funda Karaçal,et al.  Idempotent nullnorms on bounded lattices , 2018, Inf. Sci..

[20]  Andrea Mesiarová-Zemánková,et al.  Multi-polar t-conorms and uninorms , 2015, Inf. Sci..

[21]  Pawel Drygas,et al.  Distributivity between semi-t-operators and semi-nullnorms , 2015, Fuzzy Sets Syst..

[22]  Huawen Liu,et al.  On the distributivity of uninorms over nullnorms , 2013, Fuzzy Sets Syst..

[23]  Pawel Drygas,et al.  A characterization of idempotent nullnorms , 2004, Fuzzy Sets Syst..