A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems

In this paper we propose a new algorithm for solving difficult large-scale global optimization problems. We draw our inspiration from the well-known DIRECT algorithm which, by exploiting the objective function behavior, produces a set of points that tries to cover the most interesting regions of the feasible set. Unfortunately, it is well-known that this strategy suffers when the dimension of the problem increases. As a first step we define a multi-start algorithm using DIRECT as a deterministic generator of starting points. Then, the new algorithm consists in repeatedly applying the previous multi-start algorithm on suitable modifications of the variable space that exploit the information gained during the optimization process. The efficiency of the new algorithm is pointed out by a consistent numerical experimentation involving both standard test problems and the optimization of Morse potential of molecular clusters.

[1]  H. Zimmermann Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .

[2]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[3]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[4]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[5]  M. Piccioni,et al.  Random tunneling by means of acceptance-rejection sampling for global optimization , 1989 .

[6]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[7]  Leo Breiman,et al.  A deterministic algorithm for global optimization , 1993, Math. Program..

[8]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[9]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[10]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[11]  J. Doye,et al.  Structural consequences of the range of the interatomic potential A menagerie of clusters , 1997, cond-mat/9709201.

[12]  Stefano Lucidi,et al.  Curvilinear Stabilization Techniques for Truncated Newton Methods in Large Scale Unconstrained Optimization , 1998, SIAM J. Optim..

[13]  Wang Rishuang,et al.  Deterministic Algorithm for Global Optimization , 1998 .

[14]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[15]  Bernard Grossman,et al.  A Comparison of Global Optimization Methods for the Design of a High-speed Civil Transport , 2001, J. Glob. Optim..

[16]  Owen J. Eslinger,et al.  Algorithms for Noisy Problems in Gas Transmission Pipeline Optimization , 2001 .

[17]  Reiner Horst,et al.  Introduction to Global Optimization (Nonconvex Optimization and Its Applications) , 2002 .

[18]  Simon P. Wilson,et al.  Using DIRECT to Solve an Aircraft Routing Problem , 2002, Comput. Optim. Appl..

[19]  M. Locatelli Simulated Annealing Algorithms for Continuous Global Optimization , 2002 .

[20]  Clifford A. Shaffer,et al.  Dynamic Data Structures for a Direct Search Algorithm , 2002, Comput. Optim. Appl..

[21]  Fabio Schoen,et al.  Global Optimization of Morse Clusters by Potential Energy Transformations , 2004, INFORMS J. Comput..

[22]  Stefano Lucidi,et al.  A magnetic resonance device designed via global optimization techniques , 2004, Math. Program..

[23]  Bernardetta Addis,et al.  Local optima smoothing for global optimization , 2005, Optim. Methods Softw..

[24]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[25]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[26]  Volker Kaibel,et al.  Foreword: Special issue on IPCO 2005 , 2007, Math. Program..

[27]  Andrea Grosso,et al.  A Population-based Approach for Hard Global Optimization Problems based on Dissimilarity Measures , 2007, Math. Program..

[28]  Donald R. Jones,et al.  Direct Global Optimization Algorithm , 2009, Encyclopedia of Optimization.