Tame and wild kernels of quadratic imaginary number fields
暂无分享,去创建一个
[1] H. Bass,et al. The Milnor ring of a global field , 1973 .
[2] J. Browkin. On the p-rank of the tame kernel of algebraic number fields. , 1992 .
[3] Hyman Bass,et al. "Classical" algebraic K-theory, and connections with arithmetic , 1973 .
[4] A. Suslin. Algebraic K-theory of fields , 1986 .
[5] A. Borel. Values of Zeta-Functions at Integers, Cohomology and Polylogarithms , 2001 .
[6] A. Wiles,et al. Class fields of abelian extensions of Q , 1984 .
[7] P E Conner,et al. Class Number Parity , 1988 .
[8] Hyman Bass,et al. Algebraic K-theory , 1968 .
[9] H. Qin. The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields , 1995 .
[10] A. Borel. Cohomologie de SLn et valeurs de fonctions z^eta aux points entiers , 1977 .
[11] S. Lichtenbaum. Values of zeta-functions, étale cohomology, and algebraic K-theory , 1973 .