Tame and wild kernels of quadratic imaginary number fields

For all quadratic imaginary number fields F of discriminant d > −5000, we give the conjectural value of the order of Milnor’s group (the tame kernel) K2OF , where OF is the ring of integers of F. Assuming that the order is correct, we determine the structure of the group K2OF and of its subgroup WF (the wild kernel). It turns out that the odd part of the tame kernel is cyclic (with one exception, d = −3387).