Robust stochastic moment control via genetic-pole placement in communication network parameter setting

In this paper, the problems of stochastic robust approximate covariance assignment and robust covariance feedback stabilization, which are applied to variable parameters of additive increase/multiplicative decrease (AIMD) networks, are considered. The main idea of the developed algorithm is to use the parameter settings of an AIMD network congestion control scheme, where parameters may assign the desired network’s window covariance, with respect to the current network conditions. The aim is to search for the optimal AIMD parameters of a feedback gain matrix such that the objective functions defined via appropriate robustness measures and covariance assignment constraints can be optimized using an adaptive genetic algorithm (AGA). It is shown that the results can be used to develop tools for analyzing the behavior of AIMD communication networks. Quality of service (QoS) and other performance measures of the network have been improved by using the proposed congestion control. The accuracy of the controller is demonstrated by using MATLAB and NS software programs.

[1]  W. L. De Koning,et al.  Infinite horizon optimal control of linear discrete time systems with stochastic parameters , 1982, Autom..

[2]  Scott Shenker,et al.  A Theoretical Analysis of Feedback Flow Control , 1990, SIGCOMM.

[3]  Raj Jain,et al.  Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks , 1989, Comput. Networks.

[4]  Alexander Weinmann Uncertain Models and Robust Control , 2002 .

[5]  Scott Shenker,et al.  A theoretical analysis of feedback flow control , 1990, SIGCOMM '90.

[6]  Tomohiro Hachino,et al.  Model reduction with time delay combining the least-squares method with the genetic algorithm , 1996 .

[7]  Jun-Juh Yan,et al.  GA-based PID active queue management control design for a class of TCP communication networks , 2009, Expert Syst. Appl..

[8]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[9]  Liang Guo,et al.  TCP-friendly SIMD congestion control and its convergence behavior , 2001, Proceedings Ninth International Conference on Network Protocols. ICNP 2001.

[10]  Tim Clarke,et al.  Robust eigenstructure assignment using the genetic algorithm and constrained state feedback , 1997 .

[11]  Baruch Schieber,et al.  Competitive dynamic bandwidth allocation , 1998, PODC '98.

[12]  H. Kushner Stochastic Stability and Control , 2012 .

[13]  Deepak Bansal,et al.  Dynamic behavior of slowly-responsive congestion control algorithms , 2001, SIGCOMM 2001.

[14]  E.Y. Shapiro,et al.  Eigenstructure Assignment for Linear Systems , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[15]  Hamid Khaloozadeh,et al.  Genetic-sigmoid random early detection covariance control as a jitter controller , 2012 .

[16]  Naveen Garg,et al.  On-line end-to-end congestion control , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[17]  M. Borairi,et al.  Genetic design of linear multivariable feedback control systems using eigenstructure assignment , 1992 .

[18]  A. Y. Allidina,et al.  Generalised self-tuning controller with pole assignment , 1980 .

[19]  Donald F. Towsley,et al.  Modeling TCP Reno performance: a simple model and its empirical validation , 2000, TNET.

[20]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[21]  Rémi Bardenet,et al.  Monte Carlo Methods , 2013, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[22]  Engin Yaz,et al.  Deterministic and stochastic robustness measures for discrete systems , 1988 .

[23]  Yishay Mansour,et al.  Adaptive AIMD congestion control , 2003, PODC '03.

[24]  Sanjeev Arora,et al.  A Randomized Online Algorithm for Bandwidth Utilization , 2002, SODA '02.

[25]  Guo-Ping Liu,et al.  Robust control design via eigenstructure assignment, genetic algorithms and gradient-based optimisation , 1994 .

[26]  Fernando Paganini,et al.  Internet congestion control , 2002 .

[27]  Yang Richard Yang,et al.  General AIMD congestion control , 2000, Proceedings 2000 International Conference on Network Protocols.

[28]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[29]  Robert F. Stengel,et al.  Robust control of nonlinear systems with parametric uncertainty , 2002, Autom..

[30]  D. A. Livesey,et al.  Optimal Control and System Theory in Dynamic Economic Analysis. , 1977 .

[31]  S. Low,et al.  Understanding Vegas: a duality model , 2002 .

[32]  Larry L. Peterson,et al.  Understanding TCP Vegas: a duality model , 2001, JACM.

[33]  Mark Handley,et al.  Internet Congestion Control for Future High Bandwidth-Delay Product Environments , 2013 .

[34]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[35]  Sushil J. Louis,et al.  Robust stability analysis of discrete-time systems using genetic algorithms , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[36]  Christian Schindelhauer,et al.  Discrete Prediction Games with Arbitrary Feedback and Loss , 2001, COLT/EuroCOLT.

[37]  Kim Fung Man,et al.  Genetic algorithms for control and signal processing , 1997, Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066).

[38]  Mark Handley,et al.  Equation-based congestion control for unicast applications , 2000, SIGCOMM.

[39]  Robert F. Stengel,et al.  Robust control system design using random search and genetic algorithms , 1997, IEEE Trans. Autom. Control..

[40]  Richard M. Karp,et al.  Optimization problems in congestion control , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.