Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides

High-temperature superconductivity in iron pnictides occurs when electrons and holes are doped into their antiferromagnetic parent compounds. Since spin excitations may be responsible for electron pairing and superconductivity, it is important to determine their electron/hole-doping evolution and connection with superconductivity. Here we use inelastic neutron scattering to show that while electron doping to the antiferromagnetic BaFe2As2 parent compound modifies the low-energy spin excitations and their correlation with superconductivity (<50 meV) without affecting the high-energy spin excitations (>100 meV), hole-doping suppresses the high-energy spin excitations and shifts the magnetic spectral weight to low-energies. In addition, our absolute spin susceptibility measurements for the optimally hole-doped iron pnictide reveal that the change in magnetic exchange energy below and above Tc can account for the superconducting condensation energy. These results suggest that high-Tc superconductivity in iron pnictides is associated with both the presence of high-energy spin excitations and a coupling between low-energy spin excitations and itinerant electrons.

[1]  A. Sefat,et al.  Contrasting spin dynamics between underdoped and overdoped Ba(Fe1-xCox)2As2. , 2009, Physical review letters.

[2]  Takashi Takahashi,et al.  Fe-based superconductors: an angle-resolved photoemission spectroscopy perspective , 2011, 1110.6751.

[3]  Huiqian Luo,et al.  Electron doping evolution of the anisotropic spin excitations in BaFe2−xNixAs2 , 2012, 1206.0653.

[4]  J. Tranquada,et al.  Superconductivity, antiferromagnetism, and neutron scattering , 2013, 1301.5888.

[5]  S. Hayden,et al.  Anomalous high-energy spin excitations in the high-Tc superconductor-parent antiferromagnet La₂CuO₄. , 2010, Physical review letters.

[6]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[7]  E. Dagotto,et al.  Magnetism and its microscopic origin in iron-based high-temperature superconductors , 2012, Nature Physics.

[8]  P. Hirschfeld,et al.  Gap symmetry and structure of Fe-based superconductors , 2011, 1106.3712.

[9]  J. Spałek t-J model then and now: A personal perspective from the pioneering times , 2007, 0706.4236.

[10]  K. Hashimoto,et al.  Octet-Line Node Structure of Superconducting Order Parameter in KFe2As2 , 2012, Science.

[11]  H. Mook,et al.  Two-dimensional resonant magnetic excitation in BaFe1.84Co0.16As2. , 2008, Physical review letters.

[12]  M. Kanatzidis,et al.  Resonant Spin Excitation in the High Temperature Superconductor Ba0.6K0.4Fe2As2 , 2008, 0807.3932.

[13]  J. Kim,et al.  Symmetry of spin excitation spectra in the tetragonal paramagnetic and superconducting phases of 122-ferropnictides , 2010, 1007.3722.

[14]  H. Eisaki,et al.  Incommensurate spin fluctuations in hole-overdoped superconductor KFe2As2. , 2010, Physical review letters.

[15]  C. Geibel,et al.  Magnetically driven superconductivity in CeCu$_2$Si$_2$ , 2011, 1202.4112.

[16]  A. Chubukov Pairing mechanism in Fe-based superconductors , 2011, 1110.0052.

[17]  H. Mook,et al.  Magnetic energy change available to superconducting condensation in optimally doped YBa2Cu3O6.95 , 2006, cond-mat/0608280.

[18]  Matthias Troyer,et al.  Continuous-time solver for quantum impurity models. , 2005, Physical review letters.

[19]  Marcus Tegel,et al.  Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.

[20]  D. Scalapino A common thread: The pairing interaction for unconventional superconductors , 2012, 1207.4093.

[21]  H.-P. Cheng,et al.  Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2 , 2010, 1003.0133.

[22]  G. Kotliar,et al.  Self consistent GW determination of the interaction strength: application to the iron arsenide superconductors , 2010, 1005.0885.

[23]  T. Sato,et al.  Anisotropic itinerant magnetism and spin fluctuations in BaFe 2 As 2 : A neutron scattering study , 2008, 0810.4790.

[24]  Kristjan Haule,et al.  Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn 5 , CeCoIn 5 , and CeRhIn 5 , 2009, 0907.0195.

[25]  Gang Li,et al.  Structural and magnetic phase diagram of CeFeAsO(1- x)F(x) and its relation to high-temperature superconductivity. , 2008, Nature materials.

[26]  Huiqian Luo,et al.  Specific heat of optimally doped Ba(Fe 1 − x TM x ) 2 As 2 ( TM = Co and Ni) single crystals at low temperatures: A multiband fitting , 2012 .

[27]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[28]  W. Hanke,et al.  Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor , 2008, 0812.3860.

[29]  T. Perring,et al.  Nematic spin fluid in the tetragonal phase of BaFe$_{2}$As$_{2}$ , 2010, 1011.3771.

[30]  Hyowon Park,et al.  Magnetic excitation spectra in BaFe2As2: a two-particle approach within a combination of the density functional theory and the dynamical mean-field theory method. , 2011, Physical review letters.

[31]  H. Kontani,et al.  Orbital-fluctuation-mediated superconductivity in iron pnictides: analysis of the five-orbital Hubbard-Holstein model. , 2009, Physical review letters.

[32]  H. Mook,et al.  Two-dimensional resonant magnetic excitation in BaFe , 2009 .

[33]  Kristjan Haule Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base , 2007 .

[34]  K. Hradil,et al.  Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe 1.85 Co 0.15 As 2 , 2009, 0907.3632.

[35]  T. Yildirim Origin of the 150-K anomaly in LaFeAsO: competing antiferromagnetic interactions, frustration, and a structural phase transition. , 2008, Physical review letters.

[36]  M. Kanatzidis,et al.  Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering , 2008, Nature.

[37]  G. Chester Difference between Normal and Superconducting States of a Metal , 1956 .

[38]  Q. Tao,et al.  Superconductivity induced by Ni doping in BaFe2As2 single crystals , 2008, 0809.2009.

[39]  Richard L. Greene,et al.  High-temperature superconductivity in iron-based materials , 2010, 1006.4618.

[40]  M. Kanatzidis,et al.  Effect of Fermi surface nesting on resonant spin excitations in Ba(1-x)K(x)Fe2As2. , 2011, Physical review letters.

[41]  Jiangping Hu,et al.  Spin Waves and Magnetic Exchange Interactions in CaFe2As2 , 2009 .

[42]  S. Chi,et al.  Inelastic neutron-scattering measurements of a three-dimensional spin resonance in the FeAs-based BaFe1.9Ni0.1As2 superconductor. , 2009, Physical review letters.

[43]  B. Keimer,et al.  Specific heat measurements of Ba(0.68)K(0.32)Fe2As2 single crystals: evidence for a multiband strong-coupling superconducting state. , 2010, Physical review letters.

[44]  K. Okazaki Octet‐Line Node Structure of Superconducting Order Parameter in KFe2As2. , 2012 .

[45]  E. Demler,et al.  Quantitative test of a microscopic mechanism of high-temperature superconductivity , 1998, Nature.

[46]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[47]  H. Mook,et al.  Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems , 2008, Nature.

[48]  M. Kanatzidis,et al.  Magnetoelastic coupling in the phase diagram of Ba 1 − x K x Fe 2 As 2 as seen via neutron diffraction , 2011 .

[49]  X. H. Chen,et al.  Spin waves and magnetic exchange interactions in CaFe 2 As 2 , 2009, 0903.2686.

[50]  S. Hayden,et al.  Nature of magnetic excitations in superconducting BaFe1.9Ni0.1As2 , 2012, Nature Physics.