Blob‐based liquid morphing

In this paper, we propose a novel practical method for blob‐based liquid 3D morphing. Firstly, blobby objects are employed to approximate a given polygonal surface. The primitives in the medial axis sphere‐tree of a polygonal model are utilized as initial blobs—this greatly improves the robustness and efficiency of the blob‐based approximation. Secondly, we establish the blob correspondences between two models by sphere cellular matching and hierarchical matching. Finally, we interpolate the parameters of the implicit representation to get the intermediate shapes. Experiments show our method can produce visually pleasing liquid morphing effects. Copyright © 2005 John Wiley & Sons, Ltd.

[1]  Standardview staff Author's biographies , 1997, STAN.

[2]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2005, SIGGRAPH 2005.

[3]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[4]  Daniel Cohen-Or,et al.  Three-dimensional distance field metamorphosis , 1998, TOGS.

[5]  Samir Akkouche,et al.  Blob Metamorphosis based on Minkowski Sums , 1996, Comput. Graph. Forum.

[6]  Arthur W. Toga,et al.  Distance field manipulation of surface models , 1992, IEEE Computer Graphics and Applications.

[7]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2005, SIGGRAPH Courses.

[8]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[9]  Marie-Paule Cani,et al.  Semi-automatic Reconstruction of Implicit Surfaces for Medical Applications , 1995 .

[10]  Geoff Wyvill,et al.  Data structure forsoft objects , 1986, The Visual Computer.

[11]  Jules Bloomenthal,et al.  Skeletal methods of shape manipulation , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[12]  William H. Press,et al.  Numerical recipes in C , 2002 .

[13]  A. Fournier,et al.  Shape Transformations Using Union of Spheres , 1995 .

[14]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2004, SIGGRAPH Courses.

[15]  Shigeru Muraki,et al.  Volumetric shape description of range data using “Blobby Model” , 1991, SIGGRAPH.

[16]  Andrew H. Gee,et al.  Volume-based three-dimensional metamorphosis using sphere-guided region correspondence , 2001, The Visual Computer.

[17]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2005, SIGGRAPH Courses.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Marie-Paule Cani,et al.  Automatic Reconstruction of Unstructured 3D Data: Combining a Medial Axis and Implicit Surfaces , 1995, Comput. Graph. Forum.

[20]  H. Seidel,et al.  Multi-level partition of unity implicits , 2003 .

[21]  Greg Turk,et al.  Robust Creation of Implicit Surfaces from Polygonal Meshes , 2002, IEEE Trans. Vis. Comput. Graph..

[22]  Carol O'Sullivan,et al.  Adaptive medial-axis approximation for sphere-tree construction , 2004, TOGS.

[23]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[24]  Marie-Paule Cani,et al.  Implicit Surfaces for Semi-automatic Medical Organ Reconstruction , 1995, Computer Graphics.

[25]  Brian Wyvill,et al.  Introduction to Implicit Surfaces , 1997 .

[26]  James F. Blinn,et al.  A generalization of algebraic surface drawing , 1982, SIGGRAPH.

[27]  Arie E. Kaufman,et al.  Alias-Free Voxelization of Geometric Objects , 1999, IEEE Trans. Vis. Comput. Graph..

[28]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH Courses.