Primitive genetic polymers.

Since the structure of DNA was elucidated more than 50 years ago, Watson-Crick base pairing has been widely speculated to be the likely mode of both information storage and transfer in the earliest genetic polymers. The discovery of catalytic RNA molecules subsequently provided support for the hypothesis that RNA was perhaps even the first polymer of life. However, the de novo synthesis of RNA using only plausible prebiotic chemistry has proven difficult, to say the least. Experimental investigations, made possible by the application of synthetic and physical organic chemistry, have now provided evidence that the nucleobases (A, G, C, and T/U), the trifunctional moiety ([deoxy]ribose), and the linkage chemistry (phosphate esters) of contemporary nucleic acids may be optimally suited for their present roles-a situation that suggests refinement by evolution. Here, we consider studies of variations in these three distinct components of nucleic acids with regard to the question: Is RNA, as is generally acknowledged of DNA, the product of evolution? If so, what chemical and structural features might have been more likely and advantageous for a proto-RNA?

[1]  D. Deamer,et al.  Lipid-assisted Synthesis of RNA-like Polymers from Mononucleotides , 2008, Origins of Life and Evolution of Biospheres.

[2]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[3]  B. Hayter,et al.  Synthesis of Cytidine Ribonucleotides by Stepwise Assembly of the Heterocycle on a Sugar Phosphate , 2003, Chembiochem : a European journal of chemical biology.

[4]  L. Orgel,et al.  Oligomerization of activated derivatives of 3'-amino-3'-deoxyguanosine on poly(C) and poly(dC) templates. , 1985, Nucleic acids research.

[5]  A. Schwartz Phosphorus in prebiotic chemistry , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  K. Kawamura,et al.  CYCLIZATION AND DIMERIZATION OF HEXANUCLEOTIDES CONTAINING GUANINE AND CYTOSINE WITH WATER-SOLUBLE CARBODIIMIDE , 2001 .

[7]  S A Benner,et al.  Borate Minerals Stabilize Ribose , 2004, Science.

[8]  Jens Kurreck,et al.  Antisense technologies. Improvement through novel chemical modifications. , 2003, European journal of biochemistry.

[9]  D. E. Bryant,et al.  Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-phosphinic acid from the Nantan meteorite. , 2006, Chemical communications.

[10]  S. Benner,et al.  Crystal Structure of a Dimethylene Sulfone-Linked Ribodinucleotide Analog , 1995 .

[11]  Alan W. Schwartz,et al.  Extraterrestrial nucleobases in the Murchison meteorite , 2008 .

[12]  R. Gil,et al.  Solution structure of a peptide nucleic acid duplex from NMR data: features and limitations. , 2008, Journal of the American Chemical Society.

[13]  L E Orgel,et al.  The origin of life--a review of facts and speculations. , 1998, Trends in biochemical sciences.

[14]  F. De Riccardis,et al.  Mapping the landscape of potentially primordial informational oligomers: oligodipeptides and oligodipeptoids tagged with triazines as recognition elements. , 2007, Angewandte Chemie.

[15]  S. Benner,et al.  Building blocks for oligonucleotide analogues with dimethylene sulfide, sulfoxide, and sulfone groups replacing phosphodiester linkages , 1991 .

[16]  A. Cairns-smith Genetic takeover and the mineral origins of life , 1982 .

[17]  A. Eschenmoser The search for the chemistry of life's origin , 2007 .

[18]  J. Lehn,et al.  Structural selection in G-quartet-based hydrogels and controlled release of bioactive molecules. , 2008, Chemistry, an Asian journal.

[19]  D. Shugar,et al.  Tautomerism of Isoguanosine and Solvent-Induced Keto-Enol Equilibrium , 1976, Zeitschrift fur Naturforschung. Section C, Biosciences.

[20]  L. Orgel,et al.  Studies in prebiotic synthesis. VI. Synthesis of purine nucleosides. , 1968, Journal of molecular biology.

[21]  G. F. Joyce,et al.  Nonenzymatic template-directed synthesis of informational macromolecules. , 1987, Cold Spring Harbor symposia on quantitative biology.

[22]  David R. Liu,et al.  Templated Synthesis of Peptide Nucleic Acids via Sequence-Selective Base-Filling Reactions , 2009, Journal of the American Chemical Society.

[23]  E. Meggers,et al.  Insight into the high duplex stability of the simplified nucleic acid GNA. , 2009, Angewandte Chemie.

[24]  L E Orgel,et al.  Oligoaminonucleoside phosphoramidates. Oligomerization of dimers of 3'-amino-3'-deoxy-nucleotides (GC and CG) in aqueous solution. , 1987, Nucleic acids research.

[25]  F. Westheimer Why nature chose phosphates. , 1987, Science.

[26]  J. Lehn,et al.  DyNAs: constitutional dynamic nucleic acid analogues. , 2006, Chemistry.

[27]  J. Oró,et al.  Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions , 1961, Nature.

[28]  L. Orgel,et al.  A Simpler Nucleic Acid , 2000, Science.

[29]  F. Crick Origin of the Genetic Code , 1967, Nature.

[30]  N. Hud,et al.  Formation of a beta-pyrimidine nucleoside by a free pyrimidine base and ribose in a plausible prebiotic reaction. , 2007, Journal of the American Chemical Society.

[31]  John M. Beierle,et al.  Self-Assembling Sequence-Adaptive Peptide Nucleic Acids , 2009, Science.

[32]  F. Anet The place of metabolism in the origin of life. , 2004, Current opinion in chemical biology.

[33]  Steven A. Benner,et al.  Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet , 1990, Nature.

[34]  J. Szostak,et al.  Template-directed synthesis of a genetic polymer in a model protocell , 2008, Nature.

[35]  S. Benner,et al.  The Donor-Acceptor-Acceptor Purine Analog: Transformation of 5-aza-7-deaza-1H-isoguanine (=4-aminoimidazo-[1,2-a]-1,3,5-triazin-2(1H)-one) to 2′-deoxy-5-aza-7-deaza-isoguanosine using purine nucleoside phosphorylase , 1993 .

[36]  L. Orgel,et al.  Prebiotic chemistry and the origin of the RNA world. , 2004, Critical reviews in biochemistry and molecular biology.

[37]  L E Orgel,et al.  A nonenzymatic RNA polymerase model. , 1983, Science.

[38]  M. Gaffey,et al.  Studies in the Mineral and Salt-Catalyzed Formation of RNA Oligomers , 2006, Origins of Life and Evolution of Biospheres.

[39]  D. A. Usher,et al.  Hydrolytic stability of helical RNA: a selective advantage for the natural 3',5'-bond. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[40]  P. Nielsen,et al.  Crystal structure of a peptide nucleic acid (PNA) duplex at 1.7 Å resolution , 1997, Nature Structural Biology.

[41]  N. Hud,et al.  Intercalation-mediated synthesis and replication: a new approach to the origin of life. , 2000, Journal of theoretical biology.

[42]  Timothy P. Mui,et al.  Prebiotic Synthesis of Nucleotides , 2001, Origins of life and evolution of the biosphere.

[43]  C. Switzer,et al.  A pre-RNA candidate revisited: both enantiomers of flexible nucleoside triphosphates are DNA polymerase substrates. , 2008, Journal of the American Chemical Society.

[44]  F. Seela,et al.  Substituent Reactivity and Tautomerism of Isoguanosine and Related Nucleosides , 1995 .

[45]  J. Rice,et al.  Conformation of formacetal and 3'-thioformacetal nucleotide linkers and stability of their antisense RNA.DNA hybrid duplexes. , 1997, Biochemistry.

[46]  J. Szostak,et al.  N2′→P3′ Phosphoramidate Glycerol Nucleic Acid as a Potential Alternative Genetic System , 2009, Journal of the American Chemical Society.

[47]  A. Schwartz,et al.  Reduction and Activation of Phosphate on the Primitive Earth , 2000, Origins of life and evolution of the biosphere.

[48]  S. Benner,et al.  A Direct Synthesis of Nucleoside Analogs Homologated at the 3′‐ and 5′‐Positions , 2003 .

[49]  M. Egli,et al.  Interplay of structure, hydration and thermal stability in formacetal modified oligonucleotides: RNA may tolerate nonionic modifications better than DNA. , 2009, Journal of the American Chemical Society.

[50]  K. Morgan,et al.  Thermochemistry of Carbonyl Reactions. 6. A Study of Hydration Equilibria , 1994 .

[51]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[52]  Howard Fb,et al.  Interaction of poly(A) and poly(I). A reinvestigation. , 1977 .

[53]  E. Wagner,et al.  Chemie von a-Aminonitrilen. Aldomerisierung von Glycolaldehyd-phosphat zu racemischen Hexose-2,4,6-triphosphaten und (in Gegenwart von Formaldehyd) racemischen Pentose-2,4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte† , 1990 .

[54]  J. Szostak,et al.  Efficient and Rapid Template-Directed Nucleic Acid Copying Using 2′-Amino-2′,3′-dideoxyribonucleoside−5′-Phosphorimidazolide Monomers , 2009, Journal of the American Chemical Society.

[55]  R. Micura,et al.  Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2',3'-cyclophosphates (with a commentary concerning the origin of biomolecular homochirality). , 1997, Chemistry & biology.

[56]  A. Butlerow Bildung einer zuckerartigen Substanz durch Synthese , 1861 .

[57]  Jean-Marie Lehn,et al.  Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  É. Bonneil,et al.  Acyclic oligonucleotide analogues. , 1995, International journal of biological macromolecules.

[59]  K. Lin,et al.  Synthesis and binding properties of pyrimidine oligodeoxynucleoside analogs containing neutral phosphodiester replacements: the formacetal and 3'-thioformacetal internucleoside linkages , 1993 .

[60]  K. E. Nelson,et al.  The prebiotic synthesis of pyrimidines in frozen solution , 2006, Naturwissenschaften.

[61]  D. G. Davis,et al.  NMR solution structure of a peptide nucleic acid complexed with RNA. , 1994, Science.

[62]  J. Szostak,et al.  Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template , 2007, Proceedings of the National Academy of Sciences.

[63]  U. Diederichsen,et al.  Synthesis of Formacetal‐Linked Dinucleotides to Facilitate dsDNA Bending and Binding to the Homeodomain of Pax6 , 2008 .

[64]  A. Schwartz,et al.  Thermal Synthesis of Nucleoside H-Phosphonates Under Mild Conditions , 2005, Origins of Life and Evolution of Biospheres.

[65]  M. Pasek Rethinking early Earth phosphorus geochemistry , 2008, Proceedings of the National Academy of Sciences.

[66]  Peter Decker,et al.  Bioids : X. Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography—mas spectrometry of n-butoxime trifluoroacetates on OV-225 , 1982 .

[67]  N. Hud,et al.  Comprehensive investigation of the energetics of pyrimidine nucleoside formation in a model prebiotic reaction. , 2009, Journal of the American Chemical Society.

[68]  M. Frank-Kamenetskii,et al.  Base-stacking and base-pairing contributions into thermal stability of the DNA double helix , 2006, Nucleic acids research.

[69]  N. Hud,et al.  Evidence of strong hydrogen bonding by 8-aminoguanine. , 2009, Chemical communications.

[70]  L. Orgel,et al.  The Implausibility of Metabolic Cycles on the Prebiotic Earth , 2008, PLoS biology.

[71]  S. Pizzarello The chemistry of life's origin: a carbonaceous meteorite perspective. , 2006, Accounts of chemical research.

[72]  J. Sutherland,et al.  Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions , 2009, Nature.

[73]  R. Breaker,et al.  Gene regulation by riboswitches , 2004, Nature Reviews Molecular Cell Biology.

[74]  Anthony D. Keefe,et al.  Are polyphosphates or phosphate esters prebiotic reagents? , 2004, Journal of Molecular Evolution.

[75]  Nicholas V Hud,et al.  Enzymatic behavior by intercalating molecules in a template-directed ligation reaction. , 2004, Angewandte Chemie.

[76]  D. Sievers,et al.  Self-replication of complementary nucleotide-based oligomers , 1994, Nature.

[77]  C. Switzer,et al.  An Alternative Nucleobase Code: Characterization of Purine–Purine DNA Double Helices Bearing Guanine–Isoguanine and Diaminopurine 7‐Deaza‐Xanthine Base Pairs , 2008, Chembiochem : a European journal of chemical biology.

[78]  J. Summerton,et al.  Morpholino antisense oligomers: design, preparation, and properties. , 1997, Antisense & nucleic acid drug development.

[79]  B. Rode,et al.  Prebiotic formation of amino acids in a neutral atmosphere by electric discharge. , 2004, Angewandte Chemie.

[80]  Xiaoyu Li,et al.  DNA-catalyzed polymerization. , 2002, Journal of the American Chemical Society.

[81]  L. Orgel,et al.  Studies in prebiotic synthesis. V. Synthesis and photoanomerization of pyrimidine nucleosides. , 1970, Journal of molecular biology.

[82]  K. Jayaraman,et al.  Biochemical and biological effects of nonionic nucleic acid methylphosphonates. , 1981, Biochemistry.

[83]  J. Sutherland,et al.  Direct assembly of nucleoside precursors from two- and three-carbon units. , 2006, Angewandte Chemie.

[84]  N. Hud,et al.  Intercalation as a means to suppress cyclization and promote polymerization of base-pairing oligonucleotides in a prebiotic world , 2010, Proceedings of the National Academy of Sciences.

[85]  C. Crestini,et al.  Nucleoside Phosphorylation by Phosphate Minerals* , 2007, Journal of Biological Chemistry.

[86]  Martin Egli,et al.  Crystal structure of a B-form DNA duplex containing (L)-alpha-threofuranosyl (3'-->2') nucleosides: a four-carbon sugar is easily accommodated into the backbone of DNA. , 2002, Journal of the American Chemical Society.

[87]  Bernhard Jaun,et al.  Why Pentose‐ and Not Hexose‐Nucleic Acids??. Part VII. Pyranosyl‐RNA (‘p‐RNA’). Preliminary communication , 1993 .

[88]  J. Dworkin,et al.  A kinetic estimate of the free aldehyde content of aldoses. , 2000, Carbohydrate research.

[89]  Peter E. Nielsen,et al.  PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules , 1993, Nature.

[90]  B. Lesyng,et al.  Why isoguanine and isocytosine are not the components of the genetic code , 2009 .

[91]  Peter Scholz,et al.  Chemical Etiology of Nucleic Acid Structure: The α-Threofuranosyl-(3'→2') Oligonucleotide System , 2000 .

[92]  R. Strömberg,et al.  Oligoribonucleotide Analogues Containing a Mixed Backbone of Phosphodiester and Formacetal Internucleoside Linkages, Together with Vicinal 2′‐O‐Methyl Groups , 2007, Chembiochem : a European journal of chemical biology.

[93]  M. Friesenhahn,et al.  An unusual mode of DNA duplex association: Watson-Crick interaction of all-purine deoxyribonucleic acids. , 2007, Chemistry & biology.

[94]  N. Pace,et al.  The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme , 1983, Cell.

[95]  Steven A. Benner,et al.  Enzymatic incorporation of a new base pair into DNA and RNA , 1989 .

[96]  J. Oró,et al.  Synthesis of adenine from ammonium cyanide , 1960 .

[97]  J. Dworkin,et al.  Alternative bases in the RNA world: The prebiotic synthesis of urazole and its ribosides , 2004, Journal of Molecular Evolution.

[98]  P. Herdewijn TNA as a Potential Alternative to Natural Nucleic Acids. , 2001, Angewandte Chemie.

[99]  S. Benner,et al.  Oligonucleotides containing flexible nucleoside analogs , 1990 .

[100]  Eörs Szathmáry,et al.  Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life , 2010, Proceedings of the National Academy of Sciences.

[101]  J. Engels,et al.  Sequence specific hybridization properties of methylphosphonate oligodeoxynucleotides. , 1999, Journal of biomolecular structure & dynamics.

[102]  Steven A Benner,et al.  Understanding nucleic acids using synthetic chemistry. , 2004, Accounts of chemical research.

[103]  L. Orgel Evolution of the genetic apparatus. , 1968, Journal of molecular biology.

[104]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[105]  L. Orgel,et al.  Studies in prebiotic synthesis. VII , 1972, Journal of Molecular Evolution.

[106]  S. Chan,et al.  Interaction and association of bases and nucleosides in aqueous solutions. IV. Proton magnetic resonance studies of the association of pyrimidine nucleosides and their interactions with purine. , 1963, Journal of the American Chemical Society.

[107]  A. Weber The Sugar Model: Catalysis by Amines and Amino Acid Products , 2001, Origins of life and evolution of the biosphere.

[108]  J. Sutherland,et al.  Reaction of Cytidine Nucleotides with Cyanoacetylene: Support for the Intermediacy of Nucleoside‐2′,3′‐cyclic Phosphates in the Prebiotic Synthesis of RNA , 2006, Chembiochem : a European journal of chemical biology.

[109]  T. Cech,et al.  Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena , 1982, Cell.

[110]  Heather D. Bean,et al.  Glyoxylate as a Backbone Linkage for a Prebiotic Ancestor of RNA , 2006, Origins of Life and Evolution of Biospheres.

[111]  C. Crestini,et al.  One‐Pot TiO2‐Catalyzed Synthesis of Nucleic Bases and Acyclonucleosides from Formamide: Implications for the Origin of Life , 2003, Chembiochem : a European journal of chemical biology.

[112]  Raymond F. Gesteland,et al.  Life Before DNA. (Book Reviews: The RNA World. The Nature of Modern RNA Suggests a Prebiotic RNA World.) , 1993 .

[113]  G. F. Joyce,et al.  Selective derivatization and sequestration of ribose from a prebiotic mix. , 2004, Journal of the American Chemical Society.

[114]  S. Benner,et al.  Synthesis and Properties of Oligodeoxynucleotide Analogs with Bis(methylene) Sulfone Bridges , 2003 .

[115]  M. Levy,et al.  Peptide nucleic acids rather than RNA may have been the first genetic molecule. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[116]  E. Kool,et al.  Synthesis and properties of size-expanded DNAs: toward designed, functional genetic systems. , 2007, Accounts of chemical research.

[117]  A. Eschenmoser,et al.  Mapping the landscape of potentially primordial informational oligomers: oligodipeptides tagged with 2,4-disubstituted 5-aminopyrimidines as recognition elements. , 2007, Angewandte Chemie.

[118]  H. Ihmels Intercalation of Organic Dye Molecules into Double-Stranded DNA - General Principles and Recent Developments , 2005 .

[119]  R. Pattanayek,et al.  Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system. , 2006, Journal of the American Chemical Society.

[120]  S. Pitsch,et al.  Pyranosyl‐RNA: Base Pairing between Homochiral Oligonucleotide Strands of Opposite Sense of Chirality , 1996 .

[121]  L. Orgel,et al.  Conditions for Purine Synthesis: Did Prebiotic Synthesis Occur at Low Temperatures? , 1966, Science.

[122]  M. Matteucci,et al.  Chapter 30. Sequence-defined Oligonucleotides as Potential Therapeutics , 1991 .

[123]  S. Benner,et al.  Nonionic Analogs of RNA with Dimethylene Sulfone Bridges , 1996 .

[124]  N. Hud,et al.  Addressing the Problems of Base Pairing and Strand Cyclization in Template‐Directed Synthesis , 2007, Chemistry & biodiversity.

[125]  A W Schwartz,et al.  The case for an ancestral genetic system involving simple analogues of the nucleotides. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[126]  R. Curnow,et al.  The evolution of the genetic code. , 1976, Biochimie.

[127]  I. Tinoco,et al.  The stability of helical polynucleotides: base contributions. , 1962, Journal of molecular biology.

[128]  Kensei Kobayashi,et al.  Prebiotic synthesis from CO atmospheres: Implications for the origins of life , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Raffaele Saladino,et al.  Advances in the Prebiotic Synthesis of Nucleic Acids Bases: Implications for the Origin of Life , 2004 .

[130]  A. Eschenmoser The TNA-Family of Nucleic Acid Systems: Properties and Prospects , 2004, Origins of life and evolution of the biosphere.

[131]  S. Benner,et al.  Is there a common chemical model for life in the universe? , 2004, Current Opinion in Chemical Biology.

[132]  C. Crestini,et al.  Formamide Chemistry and the Origin of Informational Polymers , 2007, Chemistry & biodiversity.

[133]  A. Weber Prebiotic sugar synthesis: Hexose and hydroxy acid synthesis from glyceraldehyde catalyzed by iron(III) hydroxide oxide , 1992, Journal of Molecular Evolution.

[134]  Gerald F. Joyce,et al.  1 Prospects for Understanding the Origin of the RNA World , 1993 .

[135]  J. M. Hollis,et al.  Green Bank Telescope Observations of Interstellar Glycolaldehyde: Low-Temperature Sugar , 2004 .

[136]  Steven A Benner,et al.  Nucleobase pairing in expanded Watson-Crick-like genetic information systems. , 2003, Structure.

[137]  E. Meggers,et al.  An extremely stable and orthogonal DNA base pair with a simplified three-carbon backbone. , 2005, Journal of the American Chemical Society.