Structure and asymptotic expansion of multiple harmonic sums
暂无分享,去创建一个
Michel Petitot | Vincel Hoang Ngoc Minh | Jean-Yves Enjalbert | Christian Costermans | M. Petitot | V. H. N. Minh | Christian Costermans | Jean-Yves Enjalbert
[1] Hoang Ngoc Minh,et al. Algorithmic and combinatoric aspects of multiple harmonic sums , 2005 .
[2] Gilbert Labelle,et al. Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.
[3] V. N. Sorokin. On linear independence of values of generalized polylogarithms , 2001 .
[4] E. A. Ulanskii. Identities for Generalized Polylogarithms , 2003 .
[5] Joris van der Hoeven,et al. Shuffle algebra and polylogarithms , 2000, Discret. Math..
[6] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[7] Ernesto Oscar Reyes,et al. The Riemann zeta function , 2004 .
[8] Philippe Flajolet,et al. Hypergeometrics and the Cost Structure of Quadtrees , 1995, Random Struct. Algorithms.
[9] Mathematical Structure of Anomalous Dimensions and QCD Wilson Coefficients in Higher Order , 2004, hep-ph/0407044.
[10] Michaël Bigotte. Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés , 2000 .
[11] Michael E. Hoffman,et al. The Algebra of Multiple Harmonic Series , 1997 .
[12] D. Zagier. Values of Zeta Functions and Their Applications , 1994 .
[13] U MichaelE.Hoffman. The Algebra of Multiple Harmonic Series , 1997 .
[14] F. V. Atkinson,et al. The Riemann zeta-function , 1950 .
[15] Michel Petitot,et al. Lyndon words, polylogarithms and the Riemann Zeta function , 2000, Discret. Math..