RTL level preparation of high-quality/low-energy/low-power BIST

While high-quality BIST (built-in self test) based on deterministic vectors often has a prohibitive cost, pseudorandom based BIST may lead to low DC (defect coverage) values, requiring however very long test sequences with the corresponding energy waste and possible overheating due to extra switching activity caused by test vectors. The purpose of this paper is to discuss how a recently proposed RTL (register transfer level) test preparation methodology can be reused to drive innovative, high-quality/low-energy/low-power BIST solutions. RTL test generation is carried out through the definition of partially defined test vectors (masks) that, while targeting multiple detection of RTL faults lead to high DC values. An energy/power model is proposed to optimize the energy/power consumption of the test at RTL level. It is shown that the proposed method achieves better DC values with low-energy and low-power consumption, when compared to pseudo-random test excitation. The usefulness of the methodology is ascertained using the VERIDOS simulation environment in modules of the CMUDSP and TORCH ITC'99 benchmark circuits.

[1]  Massimo Violante,et al.  Optimal vector selection for low power BIST , 1999, Proceedings 1999 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (EFT'99).

[2]  Hans-Joachim Wunderlich,et al.  Minimized Power Consumption for Scan-Based BIST , 2000, J. Electron. Test..

[3]  Sung-Mo Kang,et al.  Determining accuracy bounds for simulation-based switching activity estimation , 1995, ISLPED '95.

[4]  João Paulo Teixeira,et al.  Implicit functionality and multiple branch coverage (IFMB): a testability metric for RT-level , 2001, Proceedings International Test Conference 2001 (Cat. No.01CH37260).

[5]  Gloria Kissin Measuring energy consumption in VLSI circuits: A foundation , 1982, STOC '82.

[6]  Sandeep K. Gupta,et al.  LT-RTPG: a new test-per-scan BIST TPG for low heat dissipation , 1999, International Test Conference 1999. Proceedings (IEEE Cat. No.99CH37034).

[7]  M. Violante,et al.  A new BIST architecture for low power circuits , 1999, European Test Workshop 1999 (Cat. No.PR00390).

[8]  J. P. Teixeira,et al.  RTL Guided Random-Pattern-Resistant Fault Detection and Low Energy BIST , 2001 .

[9]  João Paulo Teixeira,et al.  RTL-Based Functional Test Generation for High Defects Coverage in Digital Systems , 2001, J. Electron. Test..

[10]  D.D. Gajski,et al.  RT level power analysis , 1997, Proceedings of ASP-DAC '97: Asia and South Pacific Design Automation Conference.

[11]  Kaushik Roy,et al.  Design and synthesis of low power weighted random pattern generator considering peak power reduction , 1999, Proceedings 1999 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (EFT'99).

[12]  Kurt Keutzer,et al.  Estimation of power dissipation in CMOS combinational circuits , 1990, IEEE Proceedings of the Custom Integrated Circuits Conference.

[13]  João Paulo Teixeira,et al.  Defect-oriented Verilog fault simulation of SoC macros using a stratified fault sampling technique , 1999, Proceedings 17th IEEE VLSI Test Symposium (Cat. No.PR00146).

[14]  Farid N. Najm,et al.  Power modeling for high-level power estimation , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[15]  Charles R. Kime,et al.  Cellular Automata for Weighted Random Pattern Generation , 1997, IEEE Trans. Computers.

[16]  Patrick Girard,et al.  A test vector inhibiting technique for low energy BIST design , 1999, Proceedings 17th IEEE VLSI Test Symposium (Cat. No.PR00146).

[17]  John A. Waicukauski,et al.  A Method for Generating Weighted Random Test Patterns , 1989, IBM J. Res. Dev..

[18]  Hans-Joachim Wunderlich,et al.  PROTEST: A Tool for Probabilistic Testability Analysis , 1985, 22nd ACM/IEEE Design Automation Conference.

[19]  João Paulo Teixeira,et al.  Defect level evaluation in an IC design environment , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[20]  S. Hellebrand,et al.  Pattern generation for a deterministic BIST scheme , 1995, Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[21]  Farid N. Najm,et al.  Power macromodeling for high level power estimation , 1997, DAC.

[22]  Giovanni Squillero,et al.  Low power BIST via non-linear hybrid cellular automata , 2000, Proceedings 18th IEEE VLSI Test Symposium.

[23]  Farid N. Najm,et al.  Towards a high-level power estimation capability , 1995, ISLPED '95.

[24]  João Paulo Teixeira,et al.  Defect-oriented mixed-level fault simulation of digital systems-on-a-chip using HDL , 1999, DATE '99.

[25]  P. R. Stephan,et al.  SIS : A System for Sequential Circuit Synthesis , 1992 .

[26]  M. Ray Mercer,et al.  On the decline of testing efficiency as fault coverage approaches 100% , 1995, Proceedings 13th IEEE VLSI Test Symposium.

[27]  Massoud Pedram,et al.  Cycle-accurate macro-models for RT-level power analysis , 1997, ISLPED '97.

[28]  Eric Lindbloom,et al.  The Weighted Random Test-Pattern Generator , 1975, IEEE Transactions on Computers.

[29]  Farid N. Najm,et al.  Transition density, a stochastic measure of activity in digital circuits , 1991, 28th ACM/IEEE Design Automation Conference.

[30]  J. P. Teixeira,et al.  On High-Quality , Low Energy BIST Preparation at RT-Level , 2003 .

[31]  Hans-Joachim Wunderlich,et al.  Pattern generation for a deterministic BIST scheme , 1995, ICCAD.