Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial

W. Blackwelder | K. Ella | S. Panda | P Arun Kumar | Devender Kumar Sharma | M. Vable | G. Sapkal | P. Yadav | S. Kanungo | Laxmi Kumari | P. Desai | P. Abraham | S. Kant | N. Gupta | E. Rao | V. Bafna | Y. Kumar | J. Saha | P. Goyal | S. Tandon | V. Raj | S. Rane | N. Rao | M. George | V. Potdar | R. Ella | K. M. Vadrevu | S. Prasad | V. Sarangi | P. Reddy | S. Verma | C. Singh | S. Redkar | S. Mohapatra | B. Bhargava | S. Rai | D. Dhodi | D. Sudheer | A. Majumdar | V. Aglawe | P. Rahate | P. Bhatt | A. Singh | P. Ranganadin | V. Redkar | V. Mishra | V. Bhavani | J. Nair | R. Guleria | V. K. Aileni | N. Anand | C. Chaubal | S. Ramanand | M. Multani | V. Patil | A. Pandey | D. Chaudhary | A. Ali | S. Jindal | P. Sharma | P. Khosla | P. Kulkarni | R. Bhosale | M. Jain | S. Gupta | S. Dutta | K. Rami | R. Garg | Anil K Pandey | A. Savith | M. Shah | P. Aggarwal | J. Singh | Sagar Redkar | V. Tripathi | S. Mohanty | A. Sachdeva | J. Sahoo | S. Sivaprakasam | R. Verma | Siddarth Reddy | R. Gumashta | Shameem G. Mohammad | P. V. A. N. N. V. G. A. P. V. A. S. V. R. DV C. D. A. Aggarwal Aglawe Ali Anand Awad Bafna Balasubra | N. Awad | G. Balasubramaniyam | A. Bandkar | P. Basha | V. Bharge | A. Bhate | S. Bhate | D. Chalapathy | A. Chavan | K. Garg | M. Kalra | P. Meshram | S. Pandey | S. K. Panigrahi | B. Patil | B. Ramraj | R. Raphael | G. Reddy | S. Redkar | P. Sampath | L. Shanmugam | R. Sharma | P. Singh | S. Subramaniam | M. Tariq | S. Waghmare | M. Jain | M. Jain | P. Sharma

[1]  R. Myers,et al.  Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant , 2021, The New England journal of medicine.

[2]  S. Panda,et al.  Neutralization of Beta and Delta variant with sera of COVID-19 recovered cases and vaccinees of inactivated COVID-19 vaccine BBV152/Covaxin , 2021, Journal of travel medicine.

[3]  M. Hassany,et al.  Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. , 2021, JAMA.

[4]  E. Neufeld,et al.  Asymptomatic and Symptomatic SARS-CoV-2 Infections After BNT162b2 Vaccination in a Routinely Screened Workforce. , 2021, JAMA.

[5]  S. Panda,et al.  Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees , 2021, bioRxiv.

[6]  D. Bonsall,et al.  Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial , 2021, The Lancet.

[7]  S. Panda,et al.  Inactivated COVID-19 vaccine BBV152/COVAXIN effectively neutralizes recently emerged B 1.1.7 variant of SARS-CoV-2 , 2021, Journal of travel medicine.

[8]  S. Madhi,et al.  Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant , 2021, The New England Journal of Medicine.

[9]  R. Ravikrishnan,et al.  Th1 skewed immune response of whole virion inactivated SARS CoV 2 vaccine and its safety evaluation , 2021, iScience.

[10]  K. Ella,et al.  Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial , 2021, The Lancet Infectious Diseases.

[11]  K. Agarwal,et al.  Immunogenicity and protective efficacy of inactivated SARS-CoV-2 vaccine candidate, BBV152 in rhesus macaques , 2021, Nature Communications.

[12]  K. Ella,et al.  Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial , 2021, The Lancet Infectious Diseases.

[13]  K. Ella,et al.  Immunogenicity and protective efficacy of BBV152, whole virion inactivated SARS- CoV-2 vaccine candidates in the Syrian hamster model , 2021, iScience.

[14]  Nguyen H. Tran,et al.  Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK , 2020, Lancet.

[15]  K. Chu,et al.  Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial , 2020, The Lancet Infectious Diseases.

[16]  Yongli Yang,et al.  Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. , 2020, JAMA.

[17]  Atanu Basu,et al.  Full-genome sequences of the first two SARS-CoV-2 viruses from India , 2020, The Indian journal of medical research.

[18]  Atanu Basu,et al.  First isolation of SARS-CoV-2 from clinical samples in India. , 2020, The Indian journal of medical research.

[19]  S. Cherian,et al.  Development of in vitro transcribed RNA as positive control for laboratory diagnosis of SARS-CoV-2 in India , 2020, The Indian journal of medical research.

[20]  H. D. de Melker,et al.  Comparing vaccines: a systematic review of the use of the non-inferiority margin in vaccine trials. , 2015, Vaccine.

[21]  D L DeMets,et al.  Interim analysis: the alpha spending function approach. , 1994, Statistics in medicine.

[22]  S. Panda,et al.  Neutralization of VUI B.1.1.28 P2 variant with sera of COVID-19 recovered cases and recipients of Covaxin an inactivated COVID-19 vaccine , 2021, Journal of Travel Medicine.