Mapping the human middle longitudinal fasciculus through a focused anatomo-imaging study: shifting the paradigm of its segmentation and connectivity pattern

Τhe middle longitudinal fasciculus (MdLF) was initially identified in humans as a discrete subcortical pathway connecting the superior temporal gyrus (STG) to the angular gyrus (AG). Further anatomo-imaging studies, however, proposed more sophisticated but conflicting connectivity patterns and have created a vague perception on its functional anatomy. Our aim was, therefore, to investigate the ambiguous structural architecture of this tract through focused cadaveric dissections augmented by a tailored DTI protocol in healthy participants from the Human Connectome dataset. Three segments and connectivity patterns were consistently recorded: the MdLF-I, connecting the dorsolateral Temporal Pole (TP) and STG to the Superior Parietal Lobule/Precuneus, through the Heschl’s gyrus; the MdLF-II, connecting the dorsolateral TP and the STG with the Parieto-occipital area through the posterior transverse gyri and the MdLF-III connecting the most anterior part of the TP to the posterior border of the occipital lobe through the AG. The lack of an established termination pattern to the AG and the fact that no significant leftward asymmetry is disclosed tend to shift the paradigm away from language function. Conversely, the theory of “where” and “what” auditory pathways, the essential relationship of the MdLF with the auditory cortex and the functional role of the cortical areas implicated in its connectivity tend to shift the paradigm towards auditory function. Allegedly, the MdLF-I and MdLF-II segments could underpin the perception of auditory representations; whereas, the MdLF-III could potentially subserve the integration of auditory and visual information.

[1]  Hugues Duffau,et al.  Brain Hodotopy: From Esoteric Concept to Practical Surgical Applications , 2011, Neurosurgery.

[2]  J. E. Hind,et al.  Distribution of protein kinase Mζ and the complete protein kinase C isoform family in rat brain , 2000 .

[3]  E. Yeterian,et al.  MRI-Based Topographic Parcellation of Human Cerebral White Matter and Nuclei II. Rationale and Applications with Systematics of Cerebral Connectivity , 1999, NeuroImage.

[4]  L. Wald,et al.  A 64‐channel 3T array coil for accelerated brain MRI , 2013, Magnetic resonance in medicine.

[5]  Yupeng Wu,et al.  Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection , 2016, Brain Research.

[6]  O. Ratib,et al.  Nicotinic Acetylcholine Receptor Density in the “Higher-Order” Thalamus Projecting to the Prefrontal Cortex in Humans: a PET Study , 2019, Molecular Imaging and Biology.

[7]  C. Koutsarnakis,et al.  The role of white matter dissection technique in modern neuroimaging: can neuroradiologists benefit from its use? , 2015, Surgical and Radiologic Anatomy.

[8]  C. Koutsarnakis,et al.  Letter to the Editor: White matter fiber tract architecture and ventricular surgery. , 2017, Journal of neurosurgery.

[9]  H. Duffau Awake mapping and tumor surgery , 2011 .

[10]  D. Pandya,et al.  The extreme capsule in humans and rethinking of the language circuitry , 2009, Brain Structure and Function.

[11]  Hugues Duffau,et al.  Microsurgical anatomy of the sagittal stratum , 2019, Acta Neurochirurgica.

[12]  P. Goldman-Rakic,et al.  Auditory belt and parabelt projections to the prefrontal cortex in the Rhesus monkey , 1999, The Journal of comparative neurology.

[13]  D. Bohning,et al.  Reproducibility, Interrater Agreement, and Age-Related Changes of Fractional Anisotropy Measures at 3T in Healthy Subjects: Effect of the Applied b-Value , 2008, American Journal of Neuroradiology.

[14]  Song-Lin Ding,et al.  Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers , 2009, The Journal of comparative neurology.

[15]  Mara Cercignani,et al.  Twenty‐five pitfalls in the analysis of diffusion MRI data , 2010, NMR in biomedicine.

[16]  L S Illis,et al.  Herpes simplex encephalitis: long term magnetic resonance imaging and neuropsychological profile. , 1994, Journal of neurology, neurosurgery, and psychiatry.

[17]  J. Rauschecker,et al.  Vowel sound extraction in anterior superior temporal cortex , 2006, Human brain mapping.

[18]  Nikolaos Papanikolaou,et al.  Fiber tracking: A qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts , 2016, European journal of radiology open.

[19]  M. Mesulam,et al.  Brain mapping : from neural basis of cognition to surgical applications , 2011 .

[20]  D. Garbossa,et al.  Inferior Fronto-Occipital fascicle anatomy in brain tumor surgeries: From anatomy lab to surgical theater , 2019, Journal of Clinical Neuroscience.

[21]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[22]  Hugues Duffau,et al.  Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. , 2013, European journal of radiology.

[23]  Randy L. Gollub,et al.  Reproducibility of quantitative tractography methods applied to cerebral white matter , 2007, NeuroImage.

[24]  K. Rufibach,et al.  Diffusion tensor imaging of the median nerve: intra-, inter-reader agreement, and agreement between two software packages , 2012, Skeletal Radiology.

[25]  K. Hasan,et al.  Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography , 2012, Brain Structure and Function.

[26]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[27]  A. L. Rhoton The cerebrum. , 2007, Neurosurgery.

[28]  T. Rogers,et al.  Neural basis of category-specific semantic deficits for living things: evidence from semantic dementia, HSVE and a neural network model. , 2006, Brain : a journal of neurology.

[29]  Emiliano Macaluso,et al.  Multimodal Spatial Representations Engaged in Human Parietal Cortex during Both Saccadic and Manual Spatial Orienting , 2003, Current Biology.

[30]  J. E. Hind,et al.  Auditory cortex on the human posterior superior temporal gyrus , 2000, The Journal of comparative neurology.

[31]  Derek K. Jones,et al.  Symmetries in human brain language pathways correlate with verbal recall , 2007, Proceedings of the National Academy of Sciences.

[32]  Paul J. Abbas,et al.  A chronic microelectrode investigation of the tonotopic organization of human auditory cortex , 1996, Brain Research.

[33]  C. Koutsarnakis,et al.  The Superior Frontal Transsulcal Approach to the Anterior Ventricular System: Exploring the Sulcal and Subcortical Anatomy Using Anatomic Dissections and Diffusion Tensor Imaging Tractography. , 2017, World neurosurgery.

[34]  Timothy Edward John Behrens,et al.  Between session reproducibility and between subject variability of diffusion MR and tractography measures , 2006, NeuroImage.

[35]  Nikos Makris,et al.  Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spaces , 2016, Brain Imaging and Behavior.

[36]  D. Pandya,et al.  Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. , 2005, Cerebral cortex.

[37]  J. Dietemann,et al.  Temporal lobe association fiber tractography as compared to histology and dissection , 2011, Surgical and Radiologic Anatomy.

[38]  D. Le Bihan,et al.  Artifacts and pitfalls in diffusion MRI , 2006, Journal of magnetic resonance imaging : JMRI.

[39]  Alexander Brawanski,et al.  Magnetic resonance imaging diffusion tensor tractography: evaluation of anatomic accuracy of different fiber tracking software packages. , 2014, World neurosurgery.

[40]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[41]  M. Mishkin,et al.  Functional Mapping of the Primate Auditory System , 2003, Science.

[42]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[43]  Josef P. Rauschecker,et al.  Wernicke’s area revisited: Parallel streams and word processing , 2013, Brain and Language.

[44]  D. Pandya,et al.  Cerebral White Matter — Historical Evolution of Facts and Notions Concerning the Organization of the Fiber Pathways of the Brain , 2007, Journal of the history of the neurosciences.

[45]  D. Sakas,et al.  Approaching the Atrium Through the Intraparietal Sulcus: Mapping the Sulcal Morphology and Correlating the Surgical Corridor to Underlying Fiber Tracts. , 2017, Operative neurosurgery.

[46]  E. T. Possing,et al.  Human temporal lobe activation by speech and nonspeech sounds. , 2000, Cerebral cortex.

[47]  Jean-François Démonet,et al.  Electrostimulation mapping of comprehension of auditory and visual words , 2015, Cortex.

[48]  B. Shinn-Cunningham,et al.  Task-modulated “what” and “where” pathways in human auditory cortex , 2006, Proceedings of the National Academy of Sciences.

[49]  Hugues Duffau,et al.  Cortex‐sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain , 2011, Journal of anatomy.

[50]  C. Koutsarnakis,et al.  Sledge runner fasciculus: anatomic architecture and tractographic morphology , 2019, Brain Structure and Function.

[51]  Josef P. Rauschecker,et al.  Convergent evidence for the causal involvement of anterior superior temporal gyrus in auditory single-word comprehension , 2016, Cortex.

[52]  H. Fukuyama,et al.  Hemispheric asymmetry of the arcuate fasciculus , 2008, Journal of Neurology.

[53]  D. Poeppel,et al.  The cortical organization of speech processing , 2007, Nature Reviews Neuroscience.

[54]  M. Petrides The Human Cerebral Cortex: An MRI Atlas of the Sulci and Gyri in MNI Stereotaxic Space , 2011 .

[55]  D. Pandya,et al.  Post‐rolandic cortical projections of the superior temporal sulcus in the rhesus monkey , 1991, The Journal of comparative neurology.

[56]  J. Rauschecker,et al.  Functional Specialization in Rhesus Monkey Auditory Cortex , 2001, Science.

[57]  Matías Baldoncini,et al.  White Matter Topographic Anatomy applied to Temporal Lobe surgery. , 2019, World neurosurgery.

[58]  C. Filley,et al.  White Matter and Behavioral Neurology , 2005, Annals of the New York Academy of Sciences.

[59]  C. Filley,et al.  The behavioral neurology of cerebral white matter , 1998, Neurology.

[60]  R. Delfini,et al.  Three-Dimensional Anatomy of the White Matter Fibers of the Temporal Lobe: Surgical Implications. , 2017, World neurosurgery.

[61]  E. D. de Oliveira,et al.  The occipital lobe convexity sulci and gyri. , 2012, Journal of neurosurgery.

[62]  Jörg Lewald,et al.  When and Where of Auditory Spatial Processing in Cortex: A Novel Approach Using Electrotomography , 2011, PloS one.

[63]  D. Sakas,et al.  A Laboratory Manual for Stepwise Cerebral White Matter Fiber Dissection. , 2015, World neurosurgery.

[64]  S. Sunaert,et al.  The temporoinsular projection system: an anatomical study. , 2020, Journal of neurosurgery.

[65]  S. Lomber,et al.  Double dissociation of 'what' and 'where' processing in auditory cortex , 2008, Nature Neuroscience.

[66]  Stefano Merler,et al.  Towards a functional atlas of human white matter , 2015, Human brain mapping.

[67]  Elizabeth Jefferies,et al.  Semantic Processing in the Anterior Temporal Lobes: A Meta-analysis of the Functional Neuroimaging Literature , 2010, Journal of Cognitive Neuroscience.

[68]  M. Catani,et al.  A diffusion tensor imaging tractography atlas for virtual in vivo dissections , 2008, Cortex.

[69]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[70]  G L Romani,et al.  Human brain activation during passive listening to sounds from different locations: An fMRI and MEG study , 2005, Human brain mapping.

[71]  Heidi Johansen-Berg,et al.  Using diffusion imaging to study human connectional anatomy. , 2009, Annual review of neuroscience.

[72]  A. Friedman,et al.  Fiber dissection technique: lateral aspect of the brain. , 2000, Neurosurgery.

[73]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[74]  C. Price The anatomy of language: contributions from functional neuroimaging , 2000, Journal of anatomy.

[75]  Mitchel S. Berger,et al.  Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study , 2012, Brain Structure and Function.

[76]  Hugues Duffau,et al.  Brain Hodotopy: From Esoteric Concept to Practical Surgical Applications , 2011, Neurosurgery.

[77]  Max A. Viergever,et al.  Partial volume effect as a hidden covariate in DTI analyses , 2011, NeuroImage.

[78]  J. Sanes,et al.  Spatial coding of visual and somatic sensory information in body‐centred coordinates , 2001, The European journal of neuroscience.

[79]  M. Raichle A brief history of human brain mapping , 2009, Trends in Neurosciences.

[80]  A. Kassam,et al.  Microsurgical Anatomy of the Vertical Rami of the Superior Longitudinal Fasciculus: An Intraparietal Sulcus Dissection Study. , 2018, Operative neurosurgery.

[81]  A. Dale,et al.  Human posterior auditory cortex gates novel sounds to consciousness. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Junfeng Zhu,et al.  Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography , 2011, NeuroImage.

[83]  Tim D. Fryer,et al.  Declarative memory impairments in Alzheimer's disease and semantic dementia , 2006, NeuroImage.

[84]  Atul Goel,et al.  Neural Circuitry: Architecture and Function-A Fiber Dissection Study. , 2019, World neurosurgery.

[85]  D. Leopold,et al.  Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited , 2014, Proceedings of the National Academy of Sciences.

[86]  Lawrence M. Ward,et al.  Spatial attention modulates activity in a posterior “where” auditory pathway , 2005, Neuropsychologia.

[87]  Fang-Cheng Yeh,et al.  Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. , 2013, Cerebral cortex.

[88]  Marco Catani,et al.  From hodology to function. , 2007, Brain : a journal of neurology.

[89]  J. Rauschecker,et al.  Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing , 2009, Nature Neuroscience.

[90]  G. Dellatolas,et al.  Ipsilateral and contralateral cerebro-cerebellar white matter connections: A diffusion tensor imaging study in healthy adults. , 2019, Journal of neuroradiology. Journal de neuroradiologie.

[91]  D. Bullock,et al.  Associative white matter connecting the dorsal and ventral posterior human cortex , 2019, Brain Structure and Function.

[92]  D. N. Pandya,et al.  Further observations on parieto-temporal connections in the rhesus monkey , 2004, Experimental Brain Research.

[93]  D. Pandya,et al.  Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. , 2009, Cerebral cortex.

[94]  P. Chauvel,et al.  Localization of the primary auditory area in man. , 1991, Brain : a journal of neurology.

[95]  R. Goebel,et al.  Histological validation of high-resolution DTI in human post mortem tissue , 2015, Front. Neuroanat..

[96]  S. Mori,et al.  Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research , 2006, Neuron.

[97]  Walter Schneider,et al.  High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. , 2012, Neurosurgery.

[98]  M. Mishkin,et al.  Species-specific calls evoke asymmetric activity in the monkey's temporal poles , 2004, Nature.

[99]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[100]  Richard S. J. Frackowiak,et al.  A voxel‐based morphometry study of semantic dementia: Relationship between temporal lobe atrophy and semantic memory , 2000, Annals of neurology.

[101]  C. Nimsky,et al.  Merits and Limits of Tractography Techniques for the Uninitiated. , 2016, Advances and technical standards in neurosurgery.

[102]  M. L. Lambon Ralph,et al.  Conceptual knowledge is underpinned by the temporal pole bilaterally: convergent evidence from rTMS. , 2009, Cerebral cortex.

[103]  E. Jefferies,et al.  Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants , 2007, Proceedings of the National Academy of Sciences.

[104]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[105]  H. Duffau,et al.  Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study , 2011, Human brain mapping.

[106]  Guy B. Williams,et al.  The human perirhinal cortex and semantic memory , 2004, The European journal of neuroscience.

[107]  Xi-Nian Zuo,et al.  Brain structure–function associations identified in large-scale neuroimaging data , 2016, Brain Structure and Function.

[108]  M. Descoteaux,et al.  The role of the arcuate and middle longitudinal fasciculi in speech perception in noise in adulthood , 2018, Human brain mapping.

[109]  E. Macaluso,et al.  High Binaural Coherence Determines Successful Sound Localization and Increased Activity in Posterior Auditory Areas , 2005, Neuron.

[110]  David M. Thomasson,et al.  Reliability of fiber tracking measurements in diffusion tensor imaging for longitudinal study , 2010, NeuroImage.

[111]  H. Levin,et al.  Memory-related white matter tract integrity in amyotrophic lateral sclerosis: an advanced neuroimaging and neuropsychological study , 2017, Neurobiology of Aging.

[112]  Seppo P. Ahlfors,et al.  Lexical influences on speech perception: A Granger causality analysis of MEG and EEG source estimates , 2008, NeuroImage.

[113]  C. Koutsarnakis,et al.  Defining the relationship of the optic radiation to the roof and floor of the ventricular atrium: a focused microanatomical study. , 2019, Journal of neurosurgery.

[114]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[115]  T. Nishimura,et al.  Diffusion Anisotropy Measurement of Brain White Matter Is Affected by Voxel Size: Underestimation Occurs in Areas with Crossing Fibers , 2007, American Journal of Neuroradiology.

[116]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[117]  Patrizia Fattori,et al.  Posterior parietal networks encoding visual space , 2002 .

[118]  M. Schönwiesner,et al.  Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. , 2005, Cerebral cortex.

[119]  H. Duffau,et al.  Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection , 2013, Journal of anatomy.

[120]  L. M. Ward,et al.  Early phase of spatial mismatch negativity is localized to a posterior “where” auditory pathway , 2005, Experimental Brain Research.

[121]  J. Rauschecker,et al.  Mechanisms and streams for processing of "what" and "where" in auditory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Uta Noppeney,et al.  Temporal lobe lesions and semantic impairment: a comparison of herpes simplex virus encephalitis and semantic dementia. , 2006, Brain : a journal of neurology.

[123]  J. Fleiss,et al.  Intraclass correlations: uses in assessing rater reliability. , 1979, Psychological bulletin.

[124]  C. Westin,et al.  Human middle longitudinal fascicle: variations in patterns of anatomical connections , 2013, Brain Structure and Function.

[125]  E. Blanchard,et al.  How Klingler’s dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter , 2016, Brain Structure and Function.

[126]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[127]  T. Griffiths,et al.  Distinct Mechanisms for Processing Spatial Sequences and Pitch Sequences in the Human Auditory Brain , 2003, The Journal of Neuroscience.

[128]  J. Rauschecker,et al.  Perception of Sound-Source Motion by the Human Brain , 2002, Neuron.

[129]  Guy B. Williams,et al.  Inter Subject Variability and Reproducibility of Diffusion Tensor Imaging within and between Different Imaging Sessions , 2013, PloS one.

[130]  E. Mandonnet,et al.  The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification , 2018, Front. Neuroanat..

[131]  J. Kaas,et al.  Prefrontal connections of the parabelt auditory cortex in macaque monkeys , 1999, Brain Research.

[132]  Naoto Hayashi,et al.  Effect of scanner in longitudinal diffusion tensor imaging studies , 2012, Human brain mapping.

[133]  B. Sahakian,et al.  Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia , 2001, Neurology.

[134]  Robert G. Briggs,et al.  A Connectomic Atlas of the Human Cerebrum-Chapter 12: Tractographic Description of the Middle Longitudinal Fasciculus. , 2018, Operative neurosurgery.

[135]  K. Amunts,et al.  Towards Ultra-High Resolution Fibre Tract Mapping of the Human Brain – Registration of Polarised Light Images and Reorientation of Fibre Vectors , 2009, Front. Hum. Neurosci..

[136]  M. L. Lambon Ralph,et al.  Generalization and Differentiation in Semantic Memory , 2008, Annals of the New York Academy of Sciences.

[137]  E. Ludwig,et al.  Atlas cerebri humani , 1956 .

[138]  Matthew H. Davis,et al.  Susceptibility-Induced Loss of Signal: Comparing PET and fMRI on a Semantic Task , 2000, NeuroImage.

[139]  E. Middlebrooks,et al.  The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. , 2017, Journal of neurosurgery.

[140]  Robert G. Briggs,et al.  White matter connections of the inferior parietal lobule: A study of surgical anatomy , 2017, Brain and behavior.

[141]  C. Koutsarnakis,et al.  Dorsal component of the superior longitudinal fasciculus revisited: novel insights from a focused fiber dissection study. , 2020, Journal of neurosurgery.

[142]  H. Duffau,et al.  Anatomo‐functional study of the temporo‐parieto‐occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective , 2014, Journal of anatomy.

[143]  Timothy E. J. Behrens,et al.  The evolution of the arcuate fasciculus revealed with comparative DTI , 2008, Nature Neuroscience.

[144]  Fang-Cheng Yeh,et al.  A Quantitative Tractography Study Into the Connectivity, Segmentation and Laterality of the Human Inferior Longitudinal Fasciculus , 2018, bioRxiv.

[145]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[146]  M. E. Shenton,et al.  Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography , 2013, Brain Imaging and Behavior.