The structure of 2D semi-simple field theories
暂无分享,去创建一个
[1] C. Teleman. Topological field theories in 2 dimensions , 2010 .
[2] M. Markl,et al. Wheeled PROPs, graph complexes and the master equation , 2006, math/0610683.
[3] L.Katzarkov,et al. Hodge theoretic aspects of mirror symmetry , 2008, 0806.0107.
[4] Y. Manin,et al. An update on semisimple quantum cohomology and F-manifolds , 2008, 0803.2769.
[5] A. Givental,et al. Quantum Cobordisms and Formal Group Laws , 2006 .
[6] M. Kontsevich,et al. Symmetries of WDVV equations , 2005, hep-th/0508221.
[7] I. Madsen,et al. THE STABLE MAPPING CLASS GROUP AND STABLE HOMOTOPY THEORY , 2005 .
[8] K. Costello. Topological conformal field theories and Calabi–Yau categories , 2004, math/0412149.
[9] G. Ciolli. ON THE QUANTUM COHOMOLOGY OF SOME FANO THREEFOLDS AND A CONJECTURE OF DUBROVIN , 2004, math/0403300.
[10] Arend Bayer. Semisimple Quantum Cohomology and Blow-ups , 2004, math/0403260.
[11] U. Tillmann,et al. The stable mapping class group and Q(ℂP∞+) , 2001 .
[12] A. Givental. GROMOV - WITTEN INVARIANTS AND QUANTIZATION OF QUADRATIC HAMILTONIANS , 2001, math/0108100.
[13] U. Tillmann,et al. Stripping and splitting decorated mapping class groups , 2001 .
[14] A. Givental. Semisimple Frobenius structures at higher genus , 2000, math/0008067.
[15] A. Givental. On the WDVV equation in quantum K-theory. , 2000, math/0003158.
[16] T. Kimura,et al. A Change of Coordinates on the Large Phase Space¶of Quantum Cohomology , 1999, math/9907096.
[17] Yuri I. Manin,et al. Frobenius manifolds, quantum cohomology, and moduli spaces , 1999 .
[18] Y. Manin,et al. Invertible cohomological field theories and Weil-Petersson volumes , 1999, math/9902051.
[19] M. Kontsevich,et al. Relations Between the Correlators of the Topological Sigma-Model Coupled to Gravity , 1997, alg-geom/9708024.
[20] C. Hofman,et al. Topological Field Theory , 2000 .
[21] Lowell Abrams. The quantum euler class and the quantum cohomology of the Grassmannians , 1997, q-alg/9712025.
[22] U. Tillmann. On the homotopy of the stable mapping class group , 1997 .
[23] Charles StreetBaltimore,et al. TWO-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD THEORIES AND FROBENIUS ALGEBRAS , 1996 .
[24] B. Dubrovin. Geometry of 2D topological field theories , 1994, hep-th/9407018.
[25] M. Kontsevich,et al. Gromov-Witten classes, quantum cohomology, and enumerative geometry , 1994, hep-th/9402147.
[26] E. Looijenga. Stable cohomology of the mapping class group with symplectic coefficients and of the universal Abel-Jacobi map , 1994, alg-geom/9401005.
[27] E. Getzler. Batalin-Vilkovisky algebras and two-dimensional topological field theories , 1992, hep-th/9212043.
[28] Edward Witten,et al. Topological quantum field theory , 1988 .
[29] John Harer,et al. Stability of the homology of the mapping class groups of orientable surfaces , 1985 .