A Fixed Mesh Method with Immersed Finite Elements for Solving Interface Inverse Problems

We present a new fixed mesh method for solving a class of interface inverse problems for the typical elliptic interface problems. These interface inverse problems are formulated as shape optimization problems. By an immersed finite element (IFE) method, both the governing partial differential equations and the objective functional for an interface inverse problem are discretized optimally regardless of the location of the interface in a chosen mesh, and the shape optimization for recovering the interface is reduced to a constrained optimization problem. The formula for the gradient of the objective function in this constrained optimization is derived and this formula can be implemented efficiently in the IFE framework. As demonstrated by three representative applications, the proposed IFE method can be employed to solve a spectrum of interface inverse problems efficiently.

[1]  Institute of Physics , 1936, Nature.

[2]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[3]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[4]  R. Kohn,et al.  Relaxation of a variational method for impedance computed tomography , 1987 .

[5]  K. Kunisch,et al.  The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .

[6]  Robert S. Anderssen,et al.  Determination of the transmissivity zonation using a linear functional strategy , 1991 .

[7]  N. Kikuchi,et al.  A homogenization method for shape and topology optimization , 1991 .

[8]  Inverse Scattering and Applications , 1991 .

[9]  D. Schnur,et al.  An inverse method for determining elastic material properties and a material interface , 1992 .

[10]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[11]  K. Choi,et al.  A study of design velocity field computation for shape optimal design , 1994 .

[12]  Victor Isakov,et al.  Local uniqueness in the inverse conductivity problem with one measurement , 1995 .

[13]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[14]  Walter Gautschi,et al.  Numerical Analysis , 1978, Mathemagics: A Magical Journey Through Advanced Mathematics.

[15]  A. Bejan Constructal-theory network of conducting paths for cooling a heat generating volume , 1997 .

[16]  William R B Lionheart Boundary shape and electrical impedance tomography , 1998 .

[17]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[18]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[19]  Zhiming Chen,et al.  An Augmented Lagrangian Method for Identifying Discontinuous Parameters in Elliptic Systems , 1999 .

[20]  H. Lee,et al.  Identification of geometric shapes and material properties of inclusions in two-dimensional finite bodies by boundary parameterization , 2000 .

[21]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[22]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[23]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[24]  Yanping Lin,et al.  A rectangular immersed finite element space for interface problems , 2001 .

[25]  A. Attetkov,et al.  The Optimum Thickness of a Cooled Coated Wall Exposed to Local Pulse‐Periodic Heating , 2001 .

[26]  K. Kunisch,et al.  Level-set function approach to an inverse interface problem , 2001 .

[27]  M. Sasikumar,et al.  Optimization of convective fin systems: a holistic approach , 2002 .

[28]  Y. Xie,et al.  Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh , 2002 .

[29]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[30]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[31]  Joyce R. McLaughlin,et al.  Interior elastodynamics inverse problems: shear wave speed reconstruction in transient elastography , 2003 .

[32]  Xue-Cheng Tai,et al.  Identification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization , 2003, SIAM J. Sci. Comput..

[33]  David S. Holder,et al.  Electrical Impedance Tomography : Methods, History and Applications , 2004 .

[34]  Qing Li,et al.  Evolutionary topology optimization for temperature reduction of heat conducting fields , 2004 .

[35]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[36]  Juan José Ródenas,et al.  A numerical methodology to assess the quality of the design velocity field computation methods in shape sensitivity analysis , 2004 .

[37]  O. Pironneau,et al.  SHAPE OPTIMIZATION IN FLUID MECHANICS , 2004 .

[38]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[39]  Stanley Osher,et al.  A survey on level set methods for inverse problems and optimal design , 2005, European Journal of Applied Mathematics.

[40]  R. Haftka,et al.  Review of options for structural design sensitivity analysis. Part 1: Linear systems , 2005 .

[41]  Nam H. Kim,et al.  Eulerian shape design sensitivity analysis and optimization with a fixed grid , 2005 .

[42]  Gang-Won Jang,et al.  Sensitivity analysis for fixed-grid shape optimization by using oblique boundary curve approximation , 2005 .

[43]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[44]  M. Bendsøe,et al.  Topology optimization of heat conduction problems using the finite volume method , 2006 .

[45]  Barry Koren,et al.  Adjoint-based aerodynamic shape optimization on unstructured meshes , 2007, J. Comput. Phys..

[46]  Dan Givoli,et al.  XFEM‐based crack detection scheme using a genetic algorithm , 2007 .

[47]  Xiaoming He,et al.  Approximation capability of a bilinear immersed finite element space , 2008 .

[48]  Jihong Zhu,et al.  Topology optimization of heat conduction problem involving design-dependent heat load effect , 2008 .

[49]  M. Wang,et al.  A level set‐based parameterization method for structural shape and topology optimization , 2008 .

[50]  Christos Davatzikos,et al.  An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects , 2008, Journal of mathematical biology.

[51]  Mark S. Gockenbach,et al.  An Abstract Framework for Elliptic Inverse Problems: Part 2. An Augmented Lagrangian Approach , 2009 .

[52]  Michael Yu Wang,et al.  A study on X-FEM in continuum structural optimization using a level set model , 2010, Comput. Aided Des..

[53]  Haim Waisman,et al.  Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms , 2010 .

[54]  Yi Min Xie,et al.  Evolutionary Topology Optimization of Continuum Structures: Methods and Applications , 2010 .

[55]  Armando Manduca,et al.  Calculating tissue shear modulus and pressure by 2D log-elastographic methods , 2010, Inverse problems.

[56]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[57]  Glen Mullineux,et al.  Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid FEM and structural optimization , 2011 .

[58]  Yongcun Zhang,et al.  Design of the Heat Conduction Structure Based on the Topology Optimization , 2011 .

[59]  Christian Vergara,et al.  A Variational Approach for Estimating the Compliance of the Cardiovascular Tissue: An Inverse Fluid-Structure Interaction Problem , 2011, SIAM J. Sci. Comput..

[60]  Xiaoming He,et al.  Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions , 2011 .

[61]  Tao Lin,et al.  Linear and bilinear immersed finite elements for planar elasticity interface problems , 2012, J. Comput. Appl. Math..

[62]  Liang Xia,et al.  Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis , 2012 .

[63]  Philippe H. Geubelle,et al.  An interface‐enriched generalized FEM for problems with discontinuous gradient fields , 2012 .

[64]  Antonio André Novotny,et al.  Topological Derivatives in Shape Optimization , 2012 .

[65]  Jan Hegemann,et al.  An Explicit Update Scheme for Inverse Parameter and Interface Estimation of Piecewise Constant Coefficients in Linear Elliptic PDEs , 2013, SIAM J. Sci. Comput..

[66]  Zakaria Belhachmi,et al.  Shape sensitivity analysis for an interface problem via minimax differentiability , 2013, Appl. Math. Comput..

[67]  Xu Zhang,et al.  Nonconforming Immersed Finite Element Methods for Interface Problems , 2013 .

[68]  Bartosz Protas,et al.  A Method for Geometry Optimization in a Simple Model of Two-Dimensional Heat Transfer , 2013, SIAM J. Sci. Comput..

[69]  Timon Rabczuk,et al.  Detection of flaws in piezoelectric structures using extended FEM , 2013 .

[70]  Helmut Harbrecht,et al.  On the Numerical Solution of a Shape Optimization Problem for the Heat Equation , 2013, SIAM J. Sci. Comput..

[71]  G. Allaire,et al.  Shape optimization with a level set based mesh evolution method , 2014 .

[72]  Tao Lin,et al.  Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..

[73]  Wu Zedong,et al.  AN ADAPTIVE IMMERSED FINITE ELEMENT METHOD WITH ARBITRARY LAGRANGIAN-EULERIAN SCHEME FOR PARABOLIC EQUATIONS IN TIME VARIABLE DOMAINS , 2015 .

[74]  Slimane Adjerid,et al.  An immersed discontinuous finite element method for Stokes interface problems , 2015 .

[75]  Masoud Safdari,et al.  A gradient-based shape optimization scheme using an interface-enriched generalized FEM , 2015 .

[76]  Richard E. Ewing,et al.  The Mathematics of Reservoir Simulation , 2016 .

[77]  T. Lin,et al.  ERROR ANALYSIS OF AN IMMERSED FINITE ELEMENT METHOD FOR EULER-BERNOULLI BEAM INTERFACE PROBLEMS , 2017 .

[78]  Ruchi Guo,et al.  HIGH DEGREE IMMERSED FINITE ELEMENT SPACES BY A LEAST SQUARES METHOD , 2017 .

[79]  Tao Lin,et al.  Nonconforming immersed finite element spaces for elliptic interface problems , 2018, Comput. Math. Appl..

[80]  Hongyan Liu,et al.  Modeling and an immersed finite element method for an interface wave equation , 2018, Comput. Math. Appl..

[81]  Ruchi Guo,et al.  A group of immersed finite-element spaces for elliptic interface problems , 2016, 1612.00919.