Coactive Learning for Interactive Machine Translation

Coactive learning describes the interaction between an online structured learner and a human user who corrects the learner by responding with weak feedback, that is, with an improved, but not necessarily optimal, structure. We apply this framework to discriminative learning in interactive machine translation. We present a generalization to latent variable models and give regret and generalization bounds for online learning with a feedback-based latent perceptron. We show experimentally that learning from weak feedback in machine translation leads to convergence in regret and translation error.

[1]  Taro Watanabe,et al.  NTT statistical machine translation for IWSLT 2006 , 2006, IWSLT.

[2]  François Yvon,et al.  Lattice BLEU oracles in machine translation , 2013, TSLP.

[3]  Jeffrey Heer,et al.  The efficacy of human post-editing for language translation , 2013, CHI.

[4]  Pascual Martínez-Gómez,et al.  Online adaptation strategies for statistical machine translation in post-editing scenarios , 2012, Pattern Recognit..

[5]  Hervé Blanchon,et al.  The LIG Machine Translation System for WMT 2010 , 2010, WMT@ACL.

[6]  Dimitri P. Bertsekas,et al.  Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey , 2015, ArXiv.

[7]  Anoop Sarkar,et al.  Discriminative Reranking for Machine Translation , 2004, NAACL.

[8]  Ying Zhang,et al.  Online discriminative learning for machine translation with binary-valued feedback , 2014, Machine Translation.

[9]  Taro Watanabe,et al.  Optimized Online Rank Learning for Machine Translation , 2012, NAACL.

[10]  Haitao Mi,et al.  Max-Violation Perceptron and Forced Decoding for Scalable MT Training , 2013, EMNLP.

[11]  David Chiang,et al.  Hope and Fear for Discriminative Training of Statistical Translation Models , 2012, J. Mach. Learn. Res..

[12]  Vladimir Eidelman,et al.  Optimization Strategies for Online Large-Margin Learning in Machine Translation , 2012, WMT@NAACL-HLT.

[13]  Noah A. Smith,et al.  A Simple, Fast, and Effective Reparameterization of IBM Model 2 , 2013, NAACL.

[14]  Jeffrey Heer,et al.  Human Effort and Machine Learnability in Computer Aided Translation , 2014, EMNLP.

[15]  Philip Resnik,et al.  Online Large-Margin Training of Syntactic and Structural Translation Features , 2008, EMNLP.

[16]  Yoav Freund,et al.  Large Margin Classification Using the Perceptron Algorithm , 1998, COLT.

[17]  Germán Sanchis-Trilles,et al.  Online Learning of Log-Linear Weights in Interactive Machine Translation , 2012, IberSPEECH.

[18]  Taro Watanabe,et al.  Online Large-Margin Training for Statistical Machine Translation , 2007, EMNLP.

[19]  Ralph Weischedel,et al.  A STUDY OF TRANSLATION ERROR RATE WITH TARGETED HUMAN ANNOTATION , 2005 .

[20]  Albert B Novikoff,et al.  ON CONVERGENCE PROOFS FOR PERCEPTRONS , 1963 .

[21]  M. Rey,et al.  11 , 001 New Features for Statistical Machine Translation , 2009 .

[22]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[23]  Mauro Cettolo,et al.  Online adaptation to post-edits for phrase-based statistical machine translation , 2014, Machine Translation.

[24]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[25]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[26]  Matthew G. Snover,et al.  A Study of Translation Edit Rate with Targeted Human Annotation , 2006, AMTA.

[27]  Xu Sun,et al.  Latent Structured Perceptrons for Large-Scale Learning with Hidden Information , 2013, IEEE Transactions on Knowledge and Data Engineering.

[28]  Hervé Blanchon,et al.  Collection of a Large Database of French-English SMT Output Corrections , 2012, LREC.

[29]  Tong Zhang,et al.  A Discriminative Global Training Algorithm for Statistical MT , 2006, ACL.

[30]  Avneesh Singh Saluja Machine Translation with Binary Feedback: a Large-Margin Approach , 2012, AMTA.

[31]  Kenneth Heafield,et al.  KenLM: Faster and Smaller Language Model Queries , 2011, WMT@EMNLP.

[32]  Ben Taskar,et al.  An End-to-End Discriminative Approach to Machine Translation , 2006, ACL.

[33]  Chris Dyer,et al.  Joint Feature Selection in Distributed Stochastic Learning for Large-Scale Discriminative Training in SMT , 2012, ACL.

[34]  Michael Collins,et al.  Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms , 2002, EMNLP.

[35]  Alon Lavie,et al.  Learning from Post-Editing: Online Model Adaptation for Statistical Machine Translation , 2014, EACL.

[36]  Claudio Gentile,et al.  On the generalization ability of on-line learning algorithms , 2001, IEEE Transactions on Information Theory.

[37]  Marcello Federico,et al.  Generative and Discriminative Methods for Online Adaptation in SMT , 2013, MTSUMMIT.

[38]  Thorsten Joachims,et al.  Online Structured Prediction via Coactive Learning , 2012, ICML.