Targeted next generation sequencing screening of Lynch syndrome in Tunisian population

[1]  P. Goodfellow,et al.  Assessment of Tumor Sequencing as a Replacement for Lynch Syndrome Screening and Current Molecular Tests for Patients With Colorectal Cancer , 2018, JAMA oncology.

[2]  S. Gruber,et al.  Germline Genetic Features of Young Individuals With Colorectal Cancer. , 2017, Gastroenterology.

[3]  M. Hsairi,et al.  Colorectal Cancer Incidence Trend and Projections in Tunisia (1994 - 2024) , 2017, Asian Pacific journal of cancer prevention : APJCP.

[4]  J. Lindebjerg,et al.  Colorectal cancer mortality 10 years after a single round of guaiac faecal occult blood test (gFOBT) screening: experiences from a Danish screening cohort , 2016, BMJ open gastroenterology.

[5]  Cathy H. Wu,et al.  UniProt: the universal protein knowledgebase , 2016, Nucleic Acids Research.

[6]  P. Devilee,et al.  Combined mismatch repair and POLE/POLD1 defects explain unresolved suspected Lynch syndrome cancers , 2015, European Journal of Human Genetics.

[7]  H. Morreau,et al.  Germline variants in POLE are associated with early onset mismatch repair deficient colorectal cancer , 2014, European Journal of Human Genetics.

[8]  E. Kuipers,et al.  Somatic aberrations of mismatch repair genes as a cause of microsatellite‐unstable cancers , 2014, The Journal of pathology.

[9]  M. Speicher,et al.  Germline variants in the SEMA4A gene predispose to familial colorectal cancer type X , 2014, Nature Communications.

[10]  Aung Ko Win,et al.  Characterisation of Familial Colorectal Cancer Type X, Lynch syndrome, and non-familial colorectal cancer , 2014, British Journal of Cancer.

[11]  Jana Marie Schwarz,et al.  MutationTaster2: mutation prediction for the deep-sequencing age , 2014, Nature Methods.

[12]  I. Nagtegaal,et al.  Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. , 2014, Gastroenterology.

[13]  I. Tomlinson,et al.  Replicative DNA polymerase mutations in cancer☆ , 2014, Current opinion in genetics & development.

[14]  Ian Tomlinson,et al.  Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers , 2013, The Journal of pathology.

[15]  H. Morreau,et al.  Assessment of a fully automated high-throughput DNA extraction method from formalin-fixed, paraffin-embedded tissue for KRAS, and BRAF somatic mutation analysis. , 2013, Experimental and molecular pathology.

[16]  Peter Donnelly,et al.  Germline mutations in the proof-reading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas , 2012, Nature Genetics.

[17]  M. Gribaa,et al.  A c.3216_3217delGA mutation in AGL gene in Tunisian patients with a glycogen storage disease type III: evidence of a founder effect , 2012, Clinical genetics.

[18]  N. Kourda,et al.  Lynch syndrome in Tunisia: first description of clinical features and germline mutations , 2011, International Journal of Colorectal Disease.

[19]  J. Balmaña,et al.  Familial colorectal cancer risk: ESMO Clinical Practice Guidelines. , 2010, Annals of oncology : official journal of the European Society for Medical Oncology.

[20]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[21]  N. de Wind,et al.  A cell‐free assay for the functional analysis of variants of the mismatch repair protein MLH1 , 2010, Human mutation.

[22]  Suet Yi Leung,et al.  Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1 , 2009, Nature Genetics.

[23]  C. Ishioka,et al.  Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. , 2007, Cancer research.

[24]  H. Brunner,et al.  Patients with an unexplained microsatellite instable tumour have a low risk of familial cancer , 2007, British Journal of Cancer.

[25]  J. Potter,et al.  Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. , 2005, JAMA.

[26]  P. Peltomäki,et al.  HNPCC mutation MLH1 P648S makes the functional protein unstable, and homozygosity predisposes to mild neurofibromatosis type 1 , 2004, Genes, chromosomes & cancer.

[27]  H. Meijers-Heijboer,et al.  Microsatellite Instability, Immunohistochemistry, and Additional PMS2 Staining in Suspected Hereditary Nonpolyposis Colorectal Cancer , 2004, Clinical Cancer Research.

[28]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[29]  A. Ellison,et al.  Human MutL homolog (MLH1) function in DNA mismatch repair: a prospective screen for missense mutations in the ATPase domain. , 2004, Nucleic acids research.

[30]  P. Peltomäki,et al.  Deficient DNA mismatch repair: a common etiologic factor for colon cancer. , 2001, Human molecular genetics.

[31]  T. Smyrk,et al.  Hereditary colorectal cancer. , 1999, Seminars in oncology.

[32]  J. Herman,et al.  Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Peter Beighton,et al.  de la Chapelle, A. , 1997 .

[34]  R. Fleischmann,et al.  Mutations of two P/WS homologues in hereditary nonpolyposis colon cancer , 1994, Nature.

[35]  Robin J. Leach,et al.  Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer , 1993, Cell.