The LQT syndromes – current status of molecular mechanisms

Molekulargenetische Erkenntnisse bei angeborenen Herzrhythmusstörungen wurden, im Vergleich beispielsweise zu den familiären Kardiomyopathien, relativ spät bekannt, was zu einem Teil auf eine hohe Sterblichkeit und einen frühzeitigen Krankheitsbeginn dieser Erkrankungen zurückzuführen ist. Die Durchführung von genetischen Kopplungsanalysen, für die große Familien mit vielen Merkmalsträgern notwendig sind, war zunächst erschwert. 1991 wurde erstmals ein Genort auf dem Chromosom 11p15.5 beschrieben, der mit angeborenem QT-Syndrom assoziiert ist. Das ursächliche Gen KCNQ1, das eine Untereinheit eines Kaliumkanals kodiert, wurde erst 1996 identifiziert. Ferner wurden vier weitere Genloci für QT-Syndrom beschrieben und an drei von vier Mutationen in Genen, die Ionenkanaluntereinheiten kodieren, identifiziert. Zusammenfassend ist das QT-Syndrom eine genetisch heterogene Krankheit kardialer Ionenkanäle. Die Kenntnis der verursachenden Gene für QT-Syndrom hat außerdem zur Identifizierung wichtiger Komponenten geführt, die Ionenströme regulieren und an der Repolarisation beteiligt sind. Mittels In-vitro-Expression wurde gezeigt, daß die strukturell veränderten Ionenkanäle entweder eine Reduktion des Kaliumstromes I (K) während der Phase III des Aktionspotentials oder einen veränderten Natriumstrom während der Phase 0 bedingen. Mittlerweile ist die genomische Struktur der vier LQT-Gene fast vollständig bekannt; Mutationsdetektion mittels SSCP-Analysen und anschließender Sequenzierung hat das diagnostische Spektrum für diese Erkrankung erweitert und ist besonders bei der Diagnosestellung von Patienten, die keine eindeutigen EKG-Veränderungen haben, hilfreich. Die Kenntnis der krankheitsursächlichen Mutation ermöglicht eine präsymptomatische Diagnostik innerhalb einer betroffenen Familie. Derzeit werden Genotyp-Phänotyp-Untersuchungen durchgeführt, um die Penetranz und klinische Expressivität der Erkrankung zu bestimmen und weiteren Aufschlußüber inter- und intrafamiliäre Unterschiede in der Krankheitsmanifestation zu bekommen. In diesem Kapitel wird der jetzige Stand der Molekulargenetik, Elektrophysiologie und klinischen, genotypbezogenen Untersuchungen dargestellt. Our knowledge on the molecular genetics of inherited cardiac arrhythmias is very recent in comparison to the advances of genetics achieved in other inherited cardiac disorders. This is related to the high mortality and early disease onset of these arrhythmias resulting in mostly small nucleus families. Thus, traditional genetic linkage studies that are based on the genetic information obtained from large multi-generation families were made difficult. In 1991, the first chromosomal locus for congenital long-QT (LQT) syndrome was identified on chromosome 11p15.5 (LQT1 locus) by linkage analysis. Meanwhile, the disease-causing gene at the LQT1 locus (KCNQ1), a gene encoding a K+ channel subunit of the IKs channel, and three other, major genes, all encoding cardiac ion channel components, have been identified. Taken together, LQT syndrome turned out to be a heterogeneous channelopathy. Moreover, the power of linkage studies to reveal the genetic causes of the LQT syndrome was also important to identify unknown but fundamental channel components that contribute to the ion currents tuning ventricular repolarization. In-vitro-expression of the altered ion channel genes demonstrated in each case that the altered ion channel function produces prolongation of the action potential and thus the increasing propensity to ventricular tachyarrhythmias. Since these ion channels are pharmacological targets of many antiarrhythmic (and other) drugs, individual and potentially deleterious drug responses may be related to genetic variation in ion channel genes. Very recently, also in acquired LQT syndrome, which is a frequent clinical disorder in cardiology a genetic basis has been proposed in part since mutations in LQT genes have been specifically found. The discovery of ion channel defects in LQT syndrome represents the major achievement in our understanding and implies potential therpeutic options. The knowledge of the genomic structure of the LQT genes now offers the possibility to detect the underlying genetic defect in 80–90% of all patients. With this specific information, containing the type of ion channel (Na+ versus K+ channel) and electrophysiological alteratio n by the mutation (loss-of-function versus change-of-function mutation), gene-directed, elective drug therapies have been initiated in genotyped LQT patients. Based on preliminary data, that were supported by in vitro studies, this approach may be useful in recompensating the characteristic phenotypes in some LQT patients. Mutation detection is a new diagnostic tool which may become of more increasing importance in patients with a normal QTc or just a borderline prolongation of the QTc interval at presentation. These patients represent approximately 40% of all familial cases. Moreover, LQT3 syndrome and idiopathic ventricular fibrillation are allelic disorders and genetically overlap. In both mutations in the LQT3 gene SCN5A encoding the Na+ channel alpha-subunit for INa have been reported. Thus, the clinical nosology of inherited arrhythmias may be reconsidered after elucidation of the underlying molecular bases. Meanwhile, genotype-phenotype correlation in large families are on the way to evaluate intergene, interfamilial, and intrafamilial differences in the clinical phenotype reflecting gene specific, gene-site specific, and individual consequences of a given mutation. LQT syndrome is phenotypically heterogeneous due to the reduced penetrance and variable expressivity associated with the mutations. This paper discusses the current data on molecular genetics and genotype-phenotype correlations and the implications for diagnosis and treatment.

[1]  J. Warmke,et al.  HERG Sequence Correction , 1996, Science.

[2]  Y. Mori,et al.  A Cellular Model for Long QT Syndrome , 1997, The Journal of Biological Chemistry.

[3]  A. Jervell,et al.  The surdo-cardiac syndrome: three new cases of congenital deafness with syncopal attacks and Q-T prolongation in the electrocardiogram. , 1966, American heart journal.

[4]  A. George,et al.  Pharmacological targeting of long QT mutant sodium channels. , 1997, The Journal of clinical investigation.

[5]  Craig T. January,et al.  Early Afterdepolarizations: Mechanism of Induction and Block A Role for L‐Type Ca2+ Current , 1989, Circulation research.

[6]  P. Coumel,et al.  A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome , 1997, Nature Genetics.

[7]  E. Green,et al.  A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome , 1995, Cell.

[8]  R. Kass,et al.  Lidocaine block of LQT-3 mutant human Na+ channels. , 1996, Circulation research.

[9]  Gary Yellen,et al.  The inward rectification mechanism of the HERG cardiac potassium channel , 1996, Nature.

[10]  J. Mason,et al.  Genetically defined therapy of inherited long-QT syndrome. Correction of abnormal repolarization by potassium. , 1996, Circulation.

[11]  M. Sanguinetti,et al.  Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Weissenbach,et al.  Readjusting the localization of long QT syndrome gene on chromosome 11p15. , 1995, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[13]  M. Jiang,et al.  Suppression of Slow Delayed Rectifier Current by a Truncated Isoform of KvLQT1 Cloned from Normal Human Heart* , 1997, The Journal of Biological Chemistry.

[14]  G. Breithardt,et al.  KCNE1 mutations cause Jervell and Lange-Nielsen syndrome , 1997, Nature Genetics.

[15]  A. Brown,et al.  Molecular physiology and pharmacology of HERG. Single-channel currents and block by dofetilide. , 1996, Circulation.

[16]  H. Morita,et al.  Early Afterdepolarization Abolished by Potassium Channel Opener in a Patient with Idiopathic Long QT Syndrome , 1995, Journal of cardiovascular electrophysiology.

[17]  M. Sanguinetti,et al.  Mutations in the hminK gene cause long QT syndrome and suppress lKs function , 1997, Nature Genetics.

[18]  P. Coumel,et al.  Heterozygous mutation in the pore of potassium channel gene KvLQT1 causes an apparently normal phenotype in long QT syndrome , 1998, European Journal of Human Genetics.

[19]  M J Ackerman,et al.  The long QT syndrome: ion channel diseases of the heart. , 1998, Mayo Clinic proceedings.

[20]  CharlesAntzelevitch,et al.  Sodium Channel Block With Mexiletine Is Effective in Reducing Dispersion of Repolarization and Preventing Torsade de Pointes in LQT2 and LQT3 Models of the Long-QT Syndrome , 1997 .

[21]  R. Matsuoka,et al.  A de novo missense mutation of human cardiac Na+ channel exhibiting novel molecular mechanisms of long QT syndrome , 1998, FEBS letters.

[22]  B. Kerem,et al.  Novel LQT-3 Mutation Affects Na+ Channel Activity Through Interactions Between α- and β1-Subunits , 1998 .

[23]  R Lazzara,et al.  Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS. , 1996, Circulation.

[24]  M. Blanar,et al.  Dominant-negative KvLQT1 mutations underlie the LQT1 form of long QT syndrome. , 1997, Circulation.

[25]  L. Carlsson,et al.  Antiarrhythmic Effects of Potassium Channel Openers in Rhythm Abnormalities Related to Delayed Repolarization , 1992, Circulation.

[26]  M. Blanar,et al.  KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Leppert,et al.  Locus heterogeneity of autosomal dominant long QT syndrome. , 1993, The Journal of clinical investigation.

[28]  M. Keating,et al.  Molecular basis of the long-QT syndrome associated with deafness. , 1997, The New England journal of medicine.

[29]  A. George,et al.  Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Sanguinetti,et al.  Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+ channel. Open-channel block by methanesulfonanilides. , 1996, Circulation research.

[31]  G. Robertson,et al.  HERG, a human inward rectifier in the voltage-gated potassium channel family. , 1995, Science.

[32]  A. Brown,et al.  Cloned human inward rectifier K+ channel as a target for class III methanesulfonanilides. , 1995, Circulation research.

[33]  A. Wilde,et al.  A Dominant Negative Isoform of the Long QT Syndrome 1 Gene Product* , 1998, The Journal of Biological Chemistry.

[34]  Jacques Barhanin,et al.  KvLQT1 and IsK (minK) proteins associate to form the IKS cardiac potassium current , 1996, Nature.

[35]  G. Breithardt,et al.  Autosomal recessive long-QT syndrome (Jervell Lange-Nielsen syndrome) is genetically heterogeneous , 1997, Human Genetics.

[36]  M. Leppert,et al.  The spectrum of symptoms and QT intervals in carriers of the gene for the long-QT syndrome. , 1992, The New England journal of medicine.

[37]  H. Tan,et al.  Electrophysiologic Mechanisms of the Long QT Interval Syndromes and Torsade de Pointes , 1995, Annals of Internal Medicine.

[38]  M. Sanguinetti,et al.  Fast inactivation causes rectification of the IKr channel , 1996, The Journal of general physiology.

[39]  M. Sanguinetti,et al.  Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. , 1996, Nature.

[40]  S. Priori,et al.  Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. , 1995, Circulation.

[41]  G. Landes,et al.  Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias , 1996, Nature Genetics.

[42]  Arthur J Moss,et al.  SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome , 1995, Cell.

[43]  P. Coumel,et al.  A mutation in HERG associated with notched T waves in long QT syndrome. , 1996, Journal of molecular and cellular cardiology.

[44]  M. Pembrey,et al.  IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. , 1997, Human molecular genetics.

[45]  P. Coumel,et al.  KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. , 1997, Circulation.

[46]  Priya D. Duggal,et al.  Mutation of the gene for IsK associated with both Jervell and Lange-Nielsen and Romano-Ward forms of Long-QT syndrome. , 1998, Circulation.

[47]  J. Towbin,et al.  Improvement of repolarization abnormalities by a K+ channel opener in the LQT1 form of congenital long-QT syndrome. , 1998, Circulation.

[48]  S. Priori,et al.  Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. , 1995, Human molecular genetics.

[49]  E. Mathews,et al.  Q-T prolongation and ventricular arrhythmias, with and without deafness, in the same family. , 1972, The American journal of cardiology.

[50]  P. Schwartz,et al.  Multiple mechanisms of Na+ channel--linked long-QT syndrome. , 1996, Circulation research.

[51]  M. Leppert,et al.  Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. , 1991, Science.

[52]  J. Balser,et al.  Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel. , 1998, Circulation.

[53]  M. Leppert,et al.  Consistent linkage of the long-QT syndrome to the Harvey ras-1 locus on chromosome 11. , 1991, American journal of human genetics.

[54]  A. George,et al.  Molecular mechanism for an inherited cardiac arrhythmia , 1995, Nature.

[55]  A. Moss,et al.  ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. , 1995, Circulation.

[56]  S. Priori,et al.  The long QT syndrome. , 1997, Current problems in cardiology.

[57]  S. Priori,et al.  Differential response to Na+ channel blockade, beta-adrenergic stimulation, and rapid pacing in a cellular model mimicking the SCN5A and HERG defects present in the long-QT syndrome. , 1996, Circulation research.

[58]  P Coumel,et al.  Exclusion of KCNE1 (IsK) as a candidate gene for Jervell and Lange-Nielsen syndrome. , 1996, Journal of molecular and cellular cardiology.

[59]  S. Priori,et al.  A recessive variant of the Romano-Ward long-QT syndrome? , 1998, Circulation.

[60]  B Attali,et al.  Molecular Mechanism and Functional Significance of the MinK Control of the KvLQT1 Channel Activity* , 1997, The Journal of Biological Chemistry.

[61]  B. Wollnik,et al.  Pathophysiological Mechanisms of Dominant and Recessive Kvlqt1 K + Channel Mutations Found in Inherited Cardiac Arrhythmias , 1997 .

[62]  M. Lazdunski,et al.  Properties of KvLQT1 K+ channel mutations in Romano–Ward and Jervell and Lange‐Nielsen inherited cardiac arrhythmias , 1997, The EMBO journal.

[63]  M. Sanguinetti,et al.  A mechanistic link between an inherited and an acquird cardiac arrthytmia: HERG encodes the IKr potassium channel , 1995, Cell.

[64]  D. Roden,et al.  Incidence and clinical features of the quinidine-associated long QT syndrome: implications for patient care. , 1986, American heart journal.

[65]  F. Charpentier,et al.  Mapping of a gene for long QT syndrome to chromosome 4q25-27. , 1995, American journal of human genetics.

[66]  M. Sanguinetti,et al.  Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKS potassium channel , 1996, Nature.