An optimal linear solver for the Jacobian system of the extreme type-II Ginzburg-Landau problem

This paper considers the extreme type-II Ginzburg-Landau equations, a nonlinear PDE model for describing the states of a wide range of superconductors. Based on properties of the Jacobian operator and an AMG strategy, a preconditioned Newton-Krylov method is constructed. After a finite-volume-type discretization, numerical experiments are done for representative two- and three-dimensional domains. Strong numerical evidence is provided that the number of Krylov iterations is independent of the dimension n of the solution space, yielding an overall solver complexity of O(n).

[1]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[2]  Wim Vanroose,et al.  Numerical Bifurcation Study of Superconducting Patterns on a Square , 2011, SIAM J. Appl. Dyn. Syst..

[3]  Qiang Du,et al.  Modeling and Analysis of a Periodic Ginzburg-Landau Model for Type-II Superconductors , 1993, SIAM J. Appl. Math..

[4]  Sylvia Serfaty,et al.  Vortices in the Magnetic Ginzburg-Landau Model , 2006 .

[5]  J. R. Taylor,et al.  Optical Solitons: Theory and Experiment , 2005 .

[6]  Luke N. Olson,et al.  Algebraic multigrid for k‐form Laplacians , 2008, Numer. Linear Algebra Appl..

[7]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[8]  Cornelis W. Oosterlee,et al.  Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..

[9]  J. R. Taylor,et al.  Optical Solitons: Contents , 1992 .

[10]  R. Huebener Magnetic Flux Structures in Superconductors , 2001 .

[11]  Gerard L. G. Sleijpen,et al.  Differences in the Effects of Rounding Errors in Krylov Solvers for Symmetric Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[12]  Hans G. Kaper,et al.  Vortex configurations in type-II superconducting films , 1995 .

[13]  F. M. Peeters,et al.  Superconducting Wigner vortex molecule near a magnetic disk , 2003 .

[14]  David E. Keyes,et al.  Parallel domain decomposition methods for the 3D Cahn-Hilliard equation , 2011 .

[15]  Jonathan J. Hu,et al.  ML 3.1 smoothed aggregation user's guide. , 2004 .

[16]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[17]  B. Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems , 2007 .

[18]  Qiang Du,et al.  Numerical approximations of the Ginzburg–Landau models for superconductivity , 2005 .

[19]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[20]  Graham F. Carey,et al.  Multiscale and hysteresis effects in vortex pattern simulations for Ginzburg–Landau problems , 2010 .

[21]  Alexei Abrikosov,et al.  Magnetic properties of superconductors of the second group , 1956 .

[22]  Qiang Du,et al.  Ginzburg-Landau vortices: dynamics, pinning, and hysteresis , 1997 .

[23]  Jacob B. Schroder,et al.  Smoothed aggregation solvers for anisotropic diffusion , 2012, Numer. Linear Algebra Appl..

[24]  F. M. Peeters,et al.  Vortex Phase Diagram for Mesoscopic Superconducting Disks , 1998 .