Assessment of HTGR Helium Compressor Analysis Tool Based on Newton-Raphson Numerical Application to Throughflow Analysis

This study describes the development of a computer program for analyzing the off-design performance of axial flow helium compressors, which is one of the major concerns for the power conversion system of a high temperature gas-cooled reactor (HTGR). The compressor performance has been predicted by the aerodynamic analysis of meridional flow with allowances for losses. The governing equations have been derived from Euler turbomachine equation and the streamline curvature method, and then they have been merged into linearized equations based on the Newton-Raphson numerical method. The effect of viscosity is considered by empirical correlations to introduce entropy rises caused by primary loss sources. Use of the method has been illustrated by applying it to a 20-stage helium compressor of the GTHTR300 plant. As a result, the flow throughout the stages of the compressor has been predicted and the compressor characteristics have been also investigated according to the design specification. The program results show much better stability and good convergence with respect to other through-flow methods, and good agreement with the compressor performance map provided by JAEA. (authors)