Recent progress of graphene-based materials in lithium-ion capacitors

[1]  R. Ruoff,et al.  Activated graphene as a cathode material for Li-ion hybrid supercapacitors. , 2012, Physical chemistry chemical physics : PCCP.

[2]  Zhichuan J. Xu,et al.  High-performance hybrid electrochemical capacitor with binder-free Nb2O5@graphene , 2014 .

[3]  A. Yu,et al.  Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors. , 2016, ACS applied materials & interfaces.

[4]  Bruno Scrosati,et al.  Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion Batteries , 2007 .

[5]  Hui‐Ming Cheng,et al.  Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors , 2017 .

[6]  Xiong Zhang,et al.  Recent advances in porous graphene materials for supercapacitor applications , 2014 .

[7]  Feifei Zhao,et al.  The Role of Pre-Lithiation in Activated Carbon/Li4Ti5O12 Asymmetric Capacitors , 2017 .

[8]  B. Dunn,et al.  High‐Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites , 2011, Advanced materials.

[9]  H. Fan,et al.  A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. , 2015, Small.

[10]  Jianmin Ma,et al.  Engineering layer structure of MoS2-graphene composites with robust and fast lithium storage for high-performance Li-ion capacitors , 2017 .

[11]  Ya‐Xia Yin,et al.  Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels , 2017, Advanced materials.

[12]  Di Zhang,et al.  Nitrogen doping in the carbon matrix for Li-ion hybrid supercapacitors: state of the art, challenges and future prospective , 2017 .

[13]  Mei Yang,et al.  Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density , 2014 .

[14]  D. Tsai,et al.  A composite electrode of tin dioxide and carbon nanotubes and its role as negative electrode in lithium ion hybrid capacitor , 2016 .

[15]  R. Ruoff,et al.  Mass production and industrial applications of graphene materials , 2018 .

[16]  Yongyao Xia,et al.  Layered H2Ti6O13‐Nanowires: A New Promising Pseudocapacitive Material in Non‐Aqueous Electrolyte , 2012 .

[17]  Teófilo Rojo,et al.  Graphene-based lithium ion capacitor with high gravimetric energy and power densities , 2017 .

[18]  L. Qu,et al.  High‐Density Monolith of N‐Doped Holey Graphene for Ultrahigh Volumetric Capacity of Li‐Ion Batteries , 2016 .

[19]  N. A. Cordero,et al.  Interaction of lithium with graphene: An ab initio study , 2004 .

[20]  Maher F. El-Kady,et al.  Graphene for batteries, supercapacitors and beyond , 2016 .

[21]  Jim P. Zheng,et al.  High Performance Li-Ion Capacitor Laminate Cells Based on Hard Carbon/Lithium Stripes Negative Electrodes , 2017 .

[22]  Shengbo Zhang,et al.  Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor , 2017 .

[23]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[24]  Seeram Ramakrishna,et al.  Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors , 2013, Scientific Reports.

[25]  Feng Li,et al.  Armoring Graphene Cathodes for High‐Rate and Long‐Life Lithium Ion Supercapacitors , 2016 .

[26]  Jim P. Zheng,et al.  Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes , 2012 .

[27]  H. Tian,et al.  Scalable Self‐Propagating High‐Temperature Synthesis of Graphene for Supercapacitors with Superior Power Density and Cyclic Stability , 2017, Advanced materials.

[28]  A. Pandolfo,et al.  Rate capability of graphite materials as negative electrodes in lithium-ion capacitors , 2010 .

[29]  Myung-Hyun Ryou,et al.  Functionalized graphene for high performance lithium ion capacitors. , 2012, ChemSusChem.

[30]  B. Yi,et al.  Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors , 2015 .

[31]  Jinwoo Lee,et al.  Facile Synthesis of Nb2O5@Carbon Core-Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. , 2015, ACS nano.

[32]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[33]  M. Lain,et al.  A prelithiated carbon anode for lithium-ion battery applications , 2006 .

[34]  Yongsheng Chen,et al.  A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density , 2013 .

[35]  M. Ulaganathan,et al.  High energy Li-ion capacitors with conversion type Mn3O4 particulates anchored to few layer graphene as the negative electrode , 2016 .

[36]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[37]  E. Frąckowiak,et al.  Electrochemical capacitor materials based on carbon and luminophors doped with lanthanide ions , 2017 .

[38]  Hongsen Li,et al.  Three-dimensionally ordered porous TiNb2O7 nanotubes: a superior anode material for next generation hybrid supercapacitors , 2015 .

[39]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[40]  E. Lust,et al.  LiPF6 based ethylene carbonate–dimethyl carbonate electrolyte for high power density electrical double layer capacitor , 2009 .

[41]  Jim P. Zheng,et al.  Constructing High Energy and Power Densities Li-Ion Capacitors Using Li Thin Film for Pre-Lithiation , 2017 .

[42]  Junwei Lang,et al.  Fast and Large Lithium Storage in 3D Porous VN Nanowires–Graphene Composite as a Superior Anode Toward High‐Performance Hybrid Supercapacitors , 2015 .

[43]  D. Zhao,et al.  A Quasi-Solid-State Li-Ion Capacitor Based on Porous TiO2 Hollow Microspheres Wrapped with Graphene Nanosheets. , 2016, Small.

[44]  V. Aravindan,et al.  Silica-assisted bottom-up synthesis of graphene-like high surface area carbon for highly efficient ultracapacitor and Li-ion hybrid capacitor applications , 2016 .

[45]  Feng Li,et al.  Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. , 2011, ACS nano.

[46]  S. Ogale,et al.  Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material. , 2013, ChemSusChem.

[47]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[48]  Jing Li,et al.  Hybrid lithium-ion capacitors with asymmetric graphene electrodes , 2017 .

[49]  Fan Zhang,et al.  Uniform Incorporation of Flocculent Molybdenum Disulfide Nanostructure into Three-Dimensional Porous Graphene as an Anode for High-Performance Lithium Ion Batteries and Hybrid Supercapacitors. , 2016, ACS applied materials & interfaces.

[50]  Quan-hong Yang,et al.  Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges , 2016 .

[51]  Zi‐Feng Ma,et al.  Challenges of Spinel Li4Ti5O12 for Lithium‐Ion Battery Industrial Applications , 2017 .

[52]  Yi Cui,et al.  Promises and challenges of nanomaterials for lithium-based rechargeable batteries , 2016, Nature Energy.

[53]  Yongyao Xia,et al.  Electrochemical capacitors: mechanism, materials, systems, characterization and applications. , 2016, Chemical Society reviews.

[54]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[55]  Chaohe Xu,et al.  Graphene-based electrodes for electrochemical energy storage , 2013 .

[56]  Hui-Ming Cheng,et al.  Carbon nanotubes for clean energy applications , 2005 .

[57]  Da Chen,et al.  Graphene oxide: preparation, functionalization, and electrochemical applications. , 2012, Chemical reviews.

[58]  P. Poizot,et al.  Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt , 2017 .

[59]  Long Zhang,et al.  High energy density Li-ion capacitor assembled with all graphene-based electrodes , 2015 .

[60]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[61]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[62]  J. Gu,et al.  One-dimensional nanomaterials for energy storage , 2016 .

[63]  E. Lust,et al.  Synthesis and characterization of D-glucose derived nanospheric hard carbon negative electrodes for lithium- and sodium-ion batteries , 2017 .

[64]  M. Winter,et al.  On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material , 2013 .

[65]  Feiyu Kang,et al.  A high performance Li-ion capacitor constructed with Li 4 Ti 5 O 12 /C hybrid and porous graphene macroform , 2015 .

[66]  K. Novoselov,et al.  Electron transfer kinetics on mono- and multilayer graphene. , 2014, ACS nano.

[67]  Xingyi Zhou,et al.  Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries. , 2017, Accounts of chemical research.

[68]  Zhen Zhou,et al.  Nanomaterials and Technologies for Lithium‐Ion Hybrid Supercapacitors , 2016 .

[69]  Xianzhong Sun,et al.  Three dimensional graphene networks for supercapacitor electrode materials , 2015 .

[70]  Chen Li,et al.  High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4-Graphene Composite Anode and Activated Carbon Cathode. , 2017, ACS applied materials & interfaces.

[71]  M. Rosa Palacín,et al.  New British Standards , 1979 .

[72]  V. Aravindan,et al.  Exploring High‐Energy Li‐I(r)on Batteries and Capacitors with Conversion‐Type Fe3O4‐rGO as the Negative Electrode , 2017 .

[73]  Tianyu Lei,et al.  In‐Plane Assembled Orthorhombic Nb2O5 Nanorod Films with High‐Rate Li+ Intercalation for High‐Performance Flexible Li‐Ion Capacitors , 2018 .

[74]  Lianxi Zheng,et al.  Graphene based architectures for electrochemical capacitors , 2016 .

[75]  Bing Li,et al.  Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium‐Ion Capacitors , 2018, Advanced materials.

[76]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[77]  Shuru Chen,et al.  High‐Performance Hybrid Supercapacitor Enabled by a High‐Rate Si‐based Anode , 2014 .

[78]  X. Lou,et al.  Formation of Uniform N‐doped Carbon‐Coated SnO2 Submicroboxes with Enhanced Lithium Storage Properties , 2016 .

[79]  Yongsheng Chen,et al.  Graphene‐Based Materials for Lithium‐Ion Hybrid Supercapacitors , 2015, Advanced materials.

[80]  Jitong Wang,et al.  Revisiting Li + intercalation into various crystalline phases of Nb 2 O 5 anchored on graphene sheets as pseudocapacitive electrodes , 2016 .

[81]  Yongsheng Chen,et al.  Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance , 2013, Nano Research.

[82]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[83]  G. Cui,et al.  Graphene decorated with molybdenum dioxide nanoparticles for use in high energy lithium ion capacitors with an organic electrolyte , 2013 .

[84]  Xiong Zhang,et al.  A two-step method for preparing Li4Ti5O12–graphene as an anode material for lithium-ion hybrid capacitors , 2015 .

[85]  G. Shi,et al.  Graphene Materials for Electrochemical Capacitors. , 2013, The journal of physical chemistry letters.

[86]  Guozhong Cao,et al.  Mesocrystal MnO cubes as anode for Li-ion capacitors , 2016 .

[87]  Xuli Chen,et al.  Carbon-based supercapacitors for efficient energy storage , 2017 .

[88]  Wako Naoi,et al.  Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices , 2012 .

[89]  Di Zhang,et al.  Construction of SnO2−Graphene Composite with Half-Supported Cluster Structure as Anode toward Superior Lithium Storage Properties , 2017, Scientific Reports.

[90]  Li Yang,et al.  Nitrogen-doped activated carbon for a high energy hybrid supercapacitor , 2016 .

[91]  Yun-Sung Lee,et al.  Insertion-type electrodes for nonaqueous Li-ion capacitors. , 2014, Chemical reviews.

[92]  E. Lust,et al.  Electrochemical properties of carbide-derived carbon electrodes in non-aqueous electrolytes based on different Li-salts , 2011 .

[93]  K. Cychosz,et al.  Recent advances in the textural characterization of hierarchically structured nanoporous materials. , 2017, Chemical Society reviews.

[94]  Dongliang Chao,et al.  Nonaqueous Hybrid Lithium‐Ion and Sodium‐Ion Capacitors , 2017, Advanced materials.

[95]  P. Chu,et al.  Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors , 2016 .

[96]  Xiaoping Shen,et al.  Graphene nanosheets for enhanced lithium storage in lithium ion batteries , 2009 .

[97]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[98]  Yuanyuan Guo,et al.  A High‐Energy Lithium‐Ion Capacitor by Integration of a 3D Interconnected Titanium Carbide Nanoparticle Chain Anode with a Pyridine‐Derived Porous Nitrogen‐Doped Carbon Cathode , 2016 .

[99]  A. Yu,et al.  Advanced Li-Ion Hybrid Supercapacitors Based on 3D Graphene-Foam Composites. , 2016, ACS applied materials & interfaces.

[100]  Ziqi Sun,et al.  Atomic Layer‐by‐Layer Co3O4/Graphene Composite for High Performance Lithium‐Ion Batteries , 2016 .

[101]  Xiong Zhang,et al.  High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes , 2014 .

[102]  S. Ogale,et al.  Oligomer-salt derived 3D, heavily nitrogen doped, porous carbon for Li-ion hybrid electrochemical capacitors application , 2014 .

[103]  Min-Young Cho,et al.  A Novel High‐Energy Hybrid Supercapacitor with an Anatase TiO2–Reduced Graphene Oxide Anode and an Activated Carbon Cathode , 2013 .

[104]  D. Dubal,et al.  Hybrid energy storage: the merging of battery and supercapacitor chemistries. , 2015, Chemical Society reviews.

[105]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[106]  Weimin Zhang,et al.  One-Pot Spray-Dried Graphene Sheets-Encapsulated Nano-Li4Ti5O12 Microspheres for a Hybrid BatCap System , 2014 .

[107]  Zhen Zhou,et al.  Fabrication of High‐Power Li‐Ion Hybrid Supercapacitors by Enhancing the Exterior Surface Charge Storage , 2015 .

[108]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.