Synthesis, Characterization and Shape-Dependent Catalytic CO Oxidation Performance of Ruthenium Oxide Nanomaterials: Influence of Polymer Surfactant

Ruthenium oxide nano-catalysts supported on mesoporous γ-Al2O3 have been prepared by co-precipitation method and tested for CO oxidation. The effect of polyethylene glycol (PEG) on the properties of the catalyst was studied. Addition of the PEG surfactant acted as a stabilizer and induced a change in the morphology of ruthenium oxide from spherical nanoparticles to one-dimensional nanorods. Total CO conversion was measured as a function of morphology at 175 °C and 200 °C with 1.0 wt.% loading for PEG-stabilized and un-stabilized catalysts, respectively. Conversion routinely increased with temperature but in each case, the PEG-stabilized catalyst exhibited a notably higher catalytic activity as compared to the un-stabilized equivalent. It can be assumed that the increase in the activity is due to the changes in porosity, shape and dispersion of the catalyst engendered by the use of PEG.

[1]  C. Vidyasagar,et al.  Surfactant (PEG 400) effects on crystallinity of ZnO nanoparticles , 2016 .

[2]  M. Chakraborty,et al.  Room temperature benzaldehyde oxidation using air over gold–silver nanoalloy catalysts , 2015 .

[3]  P. Dufour,et al.  Low-temperature carbon monoxide and propane total oxidation by nanocrystalline cobalt oxides , 2014 .

[4]  Y. Mok,et al.  Synthesis of RuO2 nanomaterials under dielectric barrier discharge plasma at atmospheric pressure – Influence of substrates on the morphology and application , 2014 .

[5]  N. Abatzoglou,et al.  Diesel steam reforming: Comparison of two nickel aluminate catalysts prepared by wet-impregnation and co-precipitation , 2013 .

[6]  C. H. Kim,et al.  Preparation of alumina-supported gold-ruthenium bimetallic catalysts by redox reactions and their activity in preferential CO oxidation , 2013 .

[7]  Y. Mok,et al.  Novel RuO2 nanosheets – Facile synthesis, characterization and application , 2013 .

[8]  Licheng Liu,et al.  Shape-regulation: An effective way to control CO oxidation activity over noble metal catalysts , 2013 .

[9]  N. Lingaiah,et al.  NiO/Ce1−xNixO2−δ as an alternative to noble metal catalysts for CO oxidation , 2013 .

[10]  Hyun-Yong Lee,et al.  Active size-controlled Ru catalysts for selective CO oxidation in H2 , 2012 .

[11]  Y. Rhee,et al.  The surfactant-assisted Ni–Al2O3 catalyst prepared by a homogeneous precipitation method for CH4 steam reforming , 2012 .

[12]  A. García,et al.  Carbon-supported Ru and Pd nanoparticles: Efficient and recyclable catalysts for the aerobic oxidation of benzyl alcohol in water , 2012 .

[13]  B. Yang,et al.  Low Temperature CO Oxidation on Ruthenium Oxide Thin Films at Near-Atmospheric Pressures , 2012, Catalysis Letters.

[14]  A. Corma,et al.  Shape-dependent catalytic activity of palladium nanoparticles embedded in SiO2 and TiO2 , 2012 .

[15]  Stanislaus S. Wong,et al.  Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles , 2011 .

[16]  Liyi Shi,et al.  Ceria nanospindles: Template-free solvothermal synthesis and shape-dependent catalytic activity , 2011 .

[17]  S. Hosseini,et al.  Production of γ-Al 2 O 3 from Kaolin , 2011 .

[18]  M. Karim,et al.  Synthesis of γ-Alumina Particles and Surface Characterization , 2011 .

[19]  Hyunjoon Lee,et al.  Shape effect of ceria in Cu/ceria catalysts for preferential CO oxidation , 2011 .

[20]  D. Duprez,et al.  Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides , 2011 .

[21]  A. Frenkel,et al.  Shape-dependent catalytic properties of Pt nanoparticles. , 2010, Journal of the American Chemical Society.

[22]  Xiuxi Wang,et al.  Reply to the comment , 2010 .

[23]  R. Brydson,et al.  An investigation of commercial gamma-Al2O3 nanoparticles , 2010 .

[24]  N. Carrión,et al.  Preparation of ?-alumina foams of high surface area employing the polyurethane sponge replica method , 2010 .

[25]  J. Figueiredo,et al.  Carbon Monoxide Oxidation Catalysed by Exotemplated Manganese Oxides , 2010 .

[26]  Se‐Hun Kwon,et al.  Hybrid functional RuO2–Al2O3 thin films prepared by atomic layer deposition for inkjet printhead , 2010 .

[27]  Hyunjoon Lee,et al.  Shape effect of Pt nanocrystals on electrocatalytic hydrogenation , 2009 .

[28]  Dehua He,et al.  Hydrogenolysis of Glycerol to Propanediols Over Highly Active Ru–Re Bimetallic Catalysts , 2009 .

[29]  A. Seitsonen,et al.  Comment on “CO oxidation on ruthenium: The nature of the active catalytic surface” by D.W. Goodman, C.H.F. Peden, M.S. Chen , 2007 .

[30]  Jun Wang,et al.  Preparation of ZnO nanorods through wet chemical method , 2007 .

[31]  C. Peden,et al.  Reply to comment on ''CO oxidation on ruthenium: The nature of the active catalytic surface'' by H. Over, M. Muhler, A.P. Seitsonen , 2007 .

[32]  C. Peden,et al.  CO oxidation on ruthenium: The nature of the active catalytic surface , 2007 .

[33]  Kyriakos Komvopoulos,et al.  Platinum nanoparticle shape effects on benzene hydrogenation selectivity. , 2007, Nano letters.

[34]  R. Gläser,et al.  Ruthenium-containing small-pore zeolites for shape-selective catalysis , 2007 .

[35]  P. Canu,et al.  Partial oxidation of methane over supported ruthenium catalysts , 2007 .

[36]  Zongqiang Mao,et al.  Deposited RuO2–IrO2/Pt electrocatalyst for the regenerative fuel cell , 2007 .

[37]  Malcolm L. H. Green,et al.  Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system , 2006 .

[38]  Yuewu Zeng,et al.  The role of poly(ethylene glycol) in the formation of silver nanoparticles. , 2005, Journal of colloid and interface science.

[39]  G. Somorjai,et al.  Sol-gel synthesis of ordered mesoporous alumina. , 2005, Chemical communications.

[40]  H. Einaga,et al.  Photochemical preparation of poly(N-vinyl-2-pyrrolidone)-stabilized platinum colloids and their deposition on titanium dioxide. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[41]  Sukbok Chang,et al.  Use of Ruthenium/Alumina as a Convenient Catalyst for Copper‐Free Sonogashira Coupling Reactions , 2004 .

[42]  C. Bertran,et al.  Sol-Gel Synthesis of Transparent Alumina Gel and Pure Gamma Alumina by Urea Hydrolysis of Aluminum Nitrate , 2004 .

[43]  Mostafa A. El-Sayed,et al.  Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution , 2004 .

[44]  Núria López,et al.  On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation , 2004 .

[45]  W. Sugimoto,et al.  Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. , 2003, Angewandte Chemie.

[46]  P. Dutta,et al.  Zeolite-supported ruthenium oxide catalysts for photochemical reduction of water to hydrogen , 2003 .

[47]  M. White,et al.  Zeolite‐Confined Nano‐RuO2: A Green, Selective, and Efficient Catalyst for Aerobic Alcohol Oxidation. , 2003 .

[48]  M. White,et al.  Zeolite-confined Nano-RuO(2): A green, selective, and efficient catalyst for aerobic alcohol oxidation. , 2003, Journal of the American Chemical Society.

[49]  M. V. Ganduglia-Pirovano,et al.  Atomistic description of oxide formation on metal surfaces: the example of ruthenium , 2002 .

[50]  A. Alavi,et al.  Mechanism for the high reactivity of CO oxidation on a ruthenium–oxide , 2001 .

[51]  H. Kisch,et al.  Room Temperature Oxidation of Carbon Monoxide Catalyzed by Hydrous Ruthenium Dioxide. , 2000, Angewandte Chemie.

[52]  J. Raub,et al.  Health effects of exposure to ambient carbon monoxide , 1999 .

[53]  A. Rives,et al.  A study of the ruthenium–alumina system , 1998 .

[54]  마에노히로노부,et al.  Alumina-supported ruthenium catalyst , 1997 .

[55]  Kang Li,et al.  Kinetics of N20 Decomposition on a RuO2/Al2O3 Catalyst , 1997 .

[56]  B. Strohmeier Characterization of an Activated Alumina Claus Catalyst by XPS , 1994 .

[57]  S. Kaliaguine,et al.  An ESCA study of the interaction of oxygen with the surface of ruthenium , 1991 .

[58]  W. Gissler,et al.  ESCA Spectra and Electronic Properties of Some Ruthenium Compounds , 1982, January 16.

[59]  J. Sinfelt Structure of metal catalysts , 1979 .

[60]  Sandeep Kumar,et al.  Appl. Sci , 2013 .

[61]  I. Bratu,et al.  The influence of peg/ppg and of the annealing temperature on TiO 2-based layers properties , 2012 .

[62]  S. Sharifnia,et al.  Promotion of Metallic Catalysts by Metal Oxide Powders in Partial Oxidation of Methane , 2012 .

[63]  H. Kamiya,et al.  Surface Modification for Improving the Stability of Nanoparticles in Liquid Media , 2009 .

[64]  R. Tenne,et al.  Polymer-assisted fabrication of nanoparticles and nanocomposites , 2008 .

[65]  S. Han,et al.  Thermal/oxidative degradation and stabilization of polyethylene glycol , 1997 .