A classical Diophantine problem and modular forms of weight 3/2

[1]  Y. Flicker Automorphic forms on covering groups ofGL(2) , 1980 .

[2]  H. Cohen,et al.  Dimensions des espaces de formes modulaires , 1977 .

[3]  J. Tate,et al.  The arithmetic of elliptic curves , 1974 .

[4]  Arnold Pizer On the 2-part of the class number of imaginary quadratic number fields1 , 1976 .

[5]  L. Dickson History of the Theory of Numbers , 1924, Nature.

[6]  B. W. Jones,et al.  The Arithmetic Theory of Quadratic Forms , 1950 .

[7]  J. Tate,et al.  Algorithm for determining the type of a singular fiber in an elliptic pencil , 1975 .

[8]  Marvin Tretkoff,et al.  Introduction to the Arithmetic Theory of Automorphic Functions , 1971 .

[9]  N. Stephens,et al.  Congruence Properties of Congruent Numbers , 1975 .

[10]  J. Sylvester Collected mathematical papers, volume 1 , 1904 .

[11]  M. Razar The Non-Vanishing of L(1) for Certain Elliptic Curves with no First Descents , 1974 .

[12]  H. Swinnerton-Dyer,et al.  Notes on elliptic curves. II. , 1963 .

[13]  H. M. Stark,et al.  Modular forms of weight 1/2 , 1977 .

[14]  The Congruent Number Problem , 1980 .

[15]  J. L. Waldspurger,et al.  Sur les coefficients de Fourier des formes modulaires de poids demi-entier , 1981 .

[16]  H. Cohn,et al.  Note on primes of type x2 + 32y2, class number, and residuacity. , 1969 .

[17]  G. Shimura,et al.  Modular Forms of Half Integral Weight , 1973 .

[18]  M. Razar A Relation Between the Two-Component of the Tate-Safarevic Group and L(1) for Certain Elliptic Curves , 1974 .