A classical Diophantine problem and modular forms of weight 3/2
暂无分享,去创建一个
[1] Y. Flicker. Automorphic forms on covering groups ofGL(2) , 1980 .
[2] H. Cohen,et al. Dimensions des espaces de formes modulaires , 1977 .
[3] J. Tate,et al. The arithmetic of elliptic curves , 1974 .
[4] Arnold Pizer. On the 2-part of the class number of imaginary quadratic number fields1 , 1976 .
[5] L. Dickson. History of the Theory of Numbers , 1924, Nature.
[6] B. W. Jones,et al. The Arithmetic Theory of Quadratic Forms , 1950 .
[7] J. Tate,et al. Algorithm for determining the type of a singular fiber in an elliptic pencil , 1975 .
[8] Marvin Tretkoff,et al. Introduction to the Arithmetic Theory of Automorphic Functions , 1971 .
[9] N. Stephens,et al. Congruence Properties of Congruent Numbers , 1975 .
[10] J. Sylvester. Collected mathematical papers, volume 1 , 1904 .
[11] M. Razar. The Non-Vanishing of L(1) for Certain Elliptic Curves with no First Descents , 1974 .
[12] H. Swinnerton-Dyer,et al. Notes on elliptic curves. II. , 1963 .
[13] H. M. Stark,et al. Modular forms of weight 1/2 , 1977 .
[14] The Congruent Number Problem , 1980 .
[15] J. L. Waldspurger,et al. Sur les coefficients de Fourier des formes modulaires de poids demi-entier , 1981 .
[16] H. Cohn,et al. Note on primes of type x2 + 32y2, class number, and residuacity. , 1969 .
[17] G. Shimura,et al. Modular Forms of Half Integral Weight , 1973 .
[18] M. Razar. A Relation Between the Two-Component of the Tate-Safarevic Group and L(1) for Certain Elliptic Curves , 1974 .