Methods for The Metagenomic Data Visualization and Analysis.

Surveys of environmental microbial communities using metagenomic approach produce vast volumes of multidimensional data regarding the phylogenetic and functional composition of the microbiota. Faced with such complex data, a metagenomic researcher needs to select the means for data analysis properly. Data visualization became an indispensable part of the exploratory data analysis and serves a key to the discoveries. While the molecular-genetic analysis of even a single bacterium presents multiple layers of data to be properly displayed and perceived, the studies of microbiota are significantly more challenging. Here we present a review of the state-of-art methods for the visualization of metagenomic data in a multi-level manner: from the methods applicable to an in-depth analysis of a single metagenome to the techniques appropriate for large-scale studies containing hundreds of environmental samples.

[1]  B. Marx The Visual Display of Quantitative Information , 1985 .

[2]  Rob Knight,et al.  EMPeror: a tool for visualizing high-throughput microbial community data , 2013, GigaScience.

[3]  Roded Sharan,et al.  The large-scale organization of the bacterial network of ecological co-occurrence interactions , 2010, Nucleic acids research.

[4]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[5]  Rob Knight,et al.  ConStrains identifies microbial strains in metagenomic datasets , 2015, Nature Biotechnology.

[6]  Curtis Huttenhower,et al.  Microbial Co-occurrence Relationships in the Human Microbiome , 2012, PLoS Comput. Biol..

[7]  Daniel N. Frank,et al.  Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data , 2013, Bioinform..

[8]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[9]  Ivo Provaznik,et al.  Bipartite Graphs for Visualization Analysis of Microbiome Data , 2016, Evolutionary bioinformatics online.

[10]  Peer Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[11]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[12]  Timothy L. Tickle,et al.  Compact graphical representation of phylogenetic data and metadata with GraPhlAn , 2015, PeerJ.

[13]  H. Bik Phinch: An interactive, exploratory data visualization framework for –Omic datasets , 2014, bioRxiv.

[14]  A. Murat Eren,et al.  A Framework for Analysis of Metagenomic Sequencing Data , 2011, Pacific Symposium on Biocomputing.

[15]  Daniel H. Huson,et al.  MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data , 2016, PLoS Comput. Biol..

[16]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[17]  Christian Posse,et al.  Bioinformatic insights from metagenomics through visualization , 2005, 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05).

[18]  Dmitry G. Alexeev,et al.  Bacterial rose garden for metagenomic SNP-based phylogeny visualization , 2015, BioData Mining.

[19]  William A. Walters,et al.  Using QIIME to Analyze 16S rRNA Gene Sequences from Microbial Communities , 2012, Current protocols in microbiology.

[20]  Cedric E. Ginestet ggplot2: Elegant Graphics for Data Analysis , 2011 .

[21]  Paul Wilmes,et al.  Alignment-free Visualization of Metagenomic Data by Nonlinear Dimension Reduction , 2014, Scientific Reports.

[22]  Dmitry G. Alexeev,et al.  Human gut microbiota community structures in urban and rural populations in Russia , 2013, Nature Communications.

[23]  C. Kerepesi,et al.  AmphoraNet: the webserver implementation of the AMPHORA2 metagenomic workflow suite. , 2014, Gene.

[24]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[25]  A Ohri R with Cloud APIs , 2014 .

[26]  Shawn Rynearson,et al.  Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling , 2016, Genome Biology.

[27]  Shili Lin,et al.  Network construction and structure detection with metagenomic count data , 2015, BioData Mining.

[28]  Adam M. Phillippy,et al.  Interactive metagenomic visualization in a Web browser , 2011, BMC Bioinformatics.

[29]  S. Shankar Sastry,et al.  Generalized Principal Component Analysis , 2016, Interdisciplinary applied mathematics.

[30]  Ilya A. Altukhov,et al.  Knomics-Biota - a system for exploratory analysis of human gut microbiota data , 2018, BioData Mining.

[31]  Peer Bork,et al.  iPath2.0: interactive pathway explorer , 2011, Nucleic Acids Res..

[32]  Duy Tin Truong,et al.  Strain-level microbial epidemiology and population genomics from shotgun metagenomics , 2016, Nature Methods.

[33]  D. Alexeev,et al.  ResistoMap — online visualization of human gut microbiota antibiotic resistome , 2016, bioRxiv.

[34]  Julie Steele,et al.  Beautiful Visualization - Looking at Data Through the Eyes of Experts , 2010, Beautiful Visualization.

[35]  Harald R. Gruber-Vodicka,et al.  gbtools: Interactive Visualization of Metagenome Bins in R , 2015, Front. Microbiol..

[36]  Sharmila S Mande,et al.  Community-analyzer: a platform for visualizing and comparing microbial community structure across microbiomes. , 2013, Genomics.

[37]  Tom O. Delmont,et al.  Anvi’o: an advanced analysis and visualization platform for ‘omics data , 2015, PeerJ.

[38]  Inna Dubchak,et al.  Elviz – exploration of metagenome assemblies with an interactive visualization tool , 2015, BMC Bioinformatics.

[39]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[40]  Jian Xu,et al.  MetaSee: An Interactive and Extendable Visualization Toolbox for Metagenomic Sample Analysis and Comparison , 2012, PloS one.

[41]  Dmitry G. Alexeev,et al.  MetaFast: fast reference-free graph-based comparison of shotgun metagenomic data , 2016, Bioinform..