Vector coloring the categorical product of graphs
暂无分享,去创建一个
David E. Roberson | Chris Godsil | Brendan Rooney | Antonios Varvitsiotis | Robert Šámal | C. Godsil | Robert Šámal | Brendan Rooney | Antonios Varvitsiotis
[1] A. Galtman,et al. Spectral Characterizations of the Lovász Number and the Delsarte Number of a Graph , 2000 .
[2] L. Lovász,et al. Applications of product colouring , 1974 .
[3] Norbert Sauer,et al. The chromatic number of the product of two 4-chromatic graphs is 4 , 1985, Comb..
[4] Igor Pak,et al. Constructing Uniquely Realizable Graphs , 2013, Discret. Comput. Geom..
[5] David E. Roberson,et al. Sabidussi versus Hedetniemi for three variations of the chromatic number , 2013, Comb..
[6] Etienne de Klerk,et al. Aspects of Semidefinite Programming , 2002 .
[7] Dwight Duffus,et al. On the chromatic number of the product of graphs , 1985, J. Graph Theory.
[8] E. D. Klerk,et al. Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .
[9] Chris D. Godsil,et al. Graph homomorphisms via vector colorings , 2016, Eur. J. Comb..
[10] Alexander Schrijver,et al. A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.
[11] David R. Karger,et al. Approximate graph coloring by semidefinite programming , 1998, JACM.
[12] David E. Roberson,et al. Universal Completability, Least Eigenvalue Frameworks, and Vector Colorings , 2015, Discrete & Computational Geometry.
[13] Xuding Zhu,et al. The fractional version of Hedetniemi's conjecture is true , 2011, Eur. J. Comb..
[14] M. Laurent,et al. Positive semidefinite matrix completion, universal rigidity and the Strong Arnold Property , 2013, 1301.6616.
[15] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.