Hochdurchsatz-Analyse der Selbstorganisation von DNA- Nanostrukturen in Echtzeit mittels FRET-Spektroskopie†

[1]  E. Winfree,et al.  Synthesis of crystals with a programmable kinetic barrier to nucleation , 2007, Proceedings of the National Academy of Sciences.

[2]  Nadrian C. Seeman,et al.  An Overview of Structural DNA Nanotechnology , 2007, Molecular biotechnology.

[3]  Understanding DNA based nanostructures. , 2007, Journal of nanoscience and nanotechnology.

[4]  Hao Yan,et al.  DNA tile based self-assembly: building complex nanoarchitectures. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  Udo Feldkamp,et al.  Rationaler Entwurf von DNA‐Nanoarchitekturen , 2006 .

[6]  Christof M Niemeyer,et al.  Rational design of DNA nanoarchitectures. , 2006, Angewandte Chemie.

[7]  Jiyoung Heo,et al.  Atomic-level simulations of seeman DNA nanostructures: the paranemic crossover in salt solution. , 2006, Biophysical journal.

[8]  Kurt V Gothelf,et al.  DNA-programmed assembly of nanostructures. , 2005, Organic & biomolecular chemistry.

[9]  G. Deltau,et al.  New fluorescent dyes in the red region for biodiagnostics , 1995, Journal of Fluorescence.

[10]  Yan Liu,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[11]  N. Seeman DNA in a material world , 2003, Nature.

[12]  J. Mergny,et al.  Analysis of thermal melting curves. , 2003, Oligonucleotides.

[13]  C. Anselmi,et al.  From the sequence to the superstructural properties of DNAs. , 2002, Biophysical chemistry.

[14]  Y. Kamagata,et al.  Fluorescence-Quenching Phenomenon by Photoinduced Electron Transfer between a Fluorescent Dye and a Nucleotide Base , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[15]  D. Lilley,et al.  Fluorescence resonance energy transfer as a structural tool for nucleic acids. , 2000, Current opinion in chemical biology.

[16]  G. Bocchinfuso,et al.  A theoretical model for the prediction of sequence-dependent nucleosome thermodynamic stability. , 2000, Biophysical journal.

[17]  R. Hochstrasser,et al.  Nonexponential kinetics of a single tRNAPhe molecule under physiological conditions. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  R. Rigler,et al.  Conformational transitions monitored for single molecules in solution. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. Lilley,et al.  The solution structure of the four-way DNA junction at low-salt conditions: a fluorescence resonance energy transfer analysis. , 1994, Biophysical journal.

[20]  K. Breslauer Extracting thermodynamic data from equilibrium melting curves for oligonucleotide order-disorder transitions. , 1995, Methods in enzymology.

[21]  D. Lilley,et al.  Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Clegg Fluorescence resonance energy transfer and nucleic acids. , 1992, Methods in enzymology.

[23]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[24]  C. Cantor,et al.  The use of singlet-singlet energy transfer to study macromolecular assemblies. , 1978, Methods in enzymology.

[25]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .