Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields
暂无分享,去创建一个
[1] Radford M. Neal,et al. Near Shannon Limit Performance of Low Density Parity Check Codes , 1996 .
[2] Pradeep Kiran Sarvepalli,et al. On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.
[3] Juane Li,et al. A Scheme for Collective Encoding and Iterative Soft-Decision Decoding of Cyclic Codes of Prime Lengths: Applications to Reed–Solomon, BCH, and Quadratic Residue Codes , 2020, IEEE Transactions on Information Theory.
[4] Rüdiger L. Urbanke,et al. Modern Coding Theory , 2008 .
[5] Rochus Klesse,et al. Quantum error correction in spatially correlated quantum noise. , 2005, Physical review letters.
[6] Gilles Zémor,et al. Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.
[7] Hideki Imai,et al. Quantum Error Correction Beyond the Bounded Distance Decoding Limit , 2010, IEEE Transactions on Information Theory.
[8] Patrick Robertson,et al. A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain , 1995, Proceedings IEEE International Conference on Communications ICC '95.
[9] Hans-Andrea Loeliger,et al. Codes and iterative decoding on general graphs , 1995, Eur. Trans. Telecommun..
[10] Pavel Panteleev,et al. Degenerate Quantum LDPC Codes With Good Finite Length Performance , 2019, Quantum.
[11] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[12] Ajay Dholakia,et al. Reduced-complexity decoding of LDPC codes , 2005, IEEE Transactions on Communications.
[13] Soon Xin Ng,et al. Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies , 2015, IEEE Access.
[14] E. Knill. Group representations, error bases and quantum codes , 1996, quant-ph/9608049.
[15] 植松 友彦,et al. Constructing Quantum Error-Correcting Codes for p^m-State Systems from Classical Error-Correcting Codes , 2000 .
[16] David J. C. MacKay,et al. Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.
[17] E. Knill. Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.
[18] Jean-Pierre Tillich,et al. A decoding algorithm for CSS codes using the X/Z correlations , 2014, 2014 IEEE International Symposium on Information Theory.
[19] Ajay Dholakia,et al. Efficient implementations of the sum-product algorithm for decoding LDPC codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).
[20] David J. C. MacKay,et al. Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.
[21] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[22] D. Mackay,et al. Evaluation of Gallager Codes for Short Block Length and High Rate Applications , 2001 .
[23] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[24] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[25] Robert J. McEliece,et al. The generalized distributive law , 2000, IEEE Trans. Inf. Theory.
[26] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[27] Santosh Kumar,et al. Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.
[28] L. Pryadko,et al. Quantum Kronecker sum-product low-density parity-check codes with finite rate , 2012, 1212.6703.
[29] G. Gadioli La Guardia,et al. On the Construction of Nonbinary Quantum BCH Codes , 2012, IEEE Transactions on Information Theory.
[30] David Declercq,et al. Decoding Algorithms for Nonbinary LDPC Codes Over GF$(q)$ , 2007, IEEE Transactions on Communications.
[31] David Poulin,et al. On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..
[32] L. Landau. Fault-tolerant quantum computation by anyons , 2003 .
[33] Nithin Raveendran,et al. Trapping Sets of Quantum LDPC Codes , 2020, Quantum.
[34] Shu Lin,et al. Iterative soft-decision decoding of reed-solomon codes of prime lengths , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).
[35] H. Baranger,et al. Decoherence by correlated noise and quantum error correction. , 2005, Physical review letters.
[36] Jung-Fu Cheng,et al. Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..
[37] Krishna R. Narayanan,et al. Iterative Soft-Input Soft-Output Decoding of Reed-Solomon Codes by Adapting the , 2005 .
[38] Brendan J. Frey,et al. Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.
[39] T. Beth,et al. Quantum BCH Codes , 1999, quant-ph/9910060.
[40] Joachim Hagenauer,et al. Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.
[41] David J. C. MacKay,et al. Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.
[42] Robert Michael Tanner,et al. A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.
[43] H. Bombin,et al. Topological quantum distillation. , 2006, Physical review letters.
[44] Steane,et al. Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.
[45] Alex R. Rigby,et al. Modified belief propagation decoders for quantum low-density parity-check codes , 2019, Physical Review A.
[46] Amir H. Banihashemi,et al. Improving belief propagation on graphs with cycles , 2004, IEEE Communications Letters.
[47] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[48] David Poulin,et al. Neural Belief-Propagation Decoders for Quantum Error-Correcting Codes. , 2018, Physical review letters.
[49] Hideki Imai,et al. Fixed Initialization Decoding of LDPC Codes Over a Binary Symmetric Channel , 2012, IEEE Transactions on Information Theory.
[50] Martin Rötteler,et al. Efficient Quantum Circuits for Non-qubit Quantum Error-correcting Codes , 2002 .
[51] R. McEliece. Finite Fields for Computer Scientists and Engineers , 1986 .
[52] Jinghu Chen,et al. Near optimum universal belief propagation based decoding of low-density parity check codes , 2002, IEEE Trans. Commun..
[53] Robert J. McEliece,et al. Iterative algebraic soft-decision list decoding of Reed-Solomon codes , 2005, IEEE Journal on Selected Areas in Communications.
[54] Henk Wymeersch,et al. Log-domain decoding of LDPC codes over GF(q) , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).
[55] Baoming Bai,et al. Enhanced Feedback Iterative Decoding of Sparse Quantum Codes , 2009, IEEE Transactions on Information Theory.
[56] Alexei E. Ashikhmin,et al. Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.
[57] Ching-Yi Lai,et al. Decoding of Quantum Data-Syndrome Codes via Belief Propagation , 2021, 2021 IEEE International Symposium on Information Theory (ISIT).
[58] Eric M. Rains. Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.
[59] Markus Grassl,et al. Quantum Reed-Solomon Codes , 1999, AAECC.
[60] Ching-Yi Lai,et al. Exploiting Degeneracy in Belief Propagation Decoding of Quantum Codes , 2021, ArXiv.