Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields

A quantum stabilizer code over <inline-formula><tex-math notation="LaTeX">$\operatorname{GF}(q)$</tex-math></inline-formula> corresponds to a classical additive code over <inline-formula><tex-math notation="LaTeX">$\operatorname{GF}(q^2)$</tex-math></inline-formula> that is self-orthogonal with respect to a symplectic inner product. We study the decoding of quantum low-density parity-check (LDPC) codes over binary finite fields <inline-formula><tex-math notation="LaTeX">$\operatorname{GF}(q=2^l)$</tex-math></inline-formula> by the sum-product algorithm, also known as belief propagation (BP). Conventionally, a message in a nonbinary BP for quantum codes over <inline-formula><tex-math notation="LaTeX">$\operatorname{GF}(2^l)$</tex-math></inline-formula> represents a probability vector over <inline-formula><tex-math notation="LaTeX">$\operatorname{GF}(2^{2l})$</tex-math></inline-formula>, inducing high decoding complexity. In this article, we explore the property of the symplectic inner product and show that scalar messages suffice for BP decoding of nonbinary quantum codes, rather than vector messages necessary for the conventional BP. Consequently, we propose a BP decoding algorithm for quantum codes over <inline-formula><tex-math notation="LaTeX">${\operatorname{GF}(2^l)}$</tex-math></inline-formula> by passing scalar messages so that it has low computation complexity. The algorithm is specified in log domain by using log-likelihood ratios of the channel statistics to have a low implementation cost. Moreover, techniques such as message normalization or offset can be naturally applied in this algorithm to mitigate the effects of short cycles to improve the BP performance. This is important for nonbinary quantum codes since they may have more short cycles compared to binary quantum codes. Several computer simulations are provided to demonstrate these advantages. The scalar-based strategy can also be used to improve the BP decoding of classical linear codes over <inline-formula><tex-math notation="LaTeX">$\operatorname{GF}(2^l)$</tex-math></inline-formula> with many short cycles.

[1]  Radford M. Neal,et al.  Near Shannon Limit Performance of Low Density Parity Check Codes , 1996 .

[2]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[3]  Juane Li,et al.  A Scheme for Collective Encoding and Iterative Soft-Decision Decoding of Cyclic Codes of Prime Lengths: Applications to Reed–Solomon, BCH, and Quadratic Residue Codes , 2020, IEEE Transactions on Information Theory.

[4]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[5]  Rochus Klesse,et al.  Quantum error correction in spatially correlated quantum noise. , 2005, Physical review letters.

[6]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[7]  Hideki Imai,et al.  Quantum Error Correction Beyond the Bounded Distance Decoding Limit , 2010, IEEE Transactions on Information Theory.

[8]  Patrick Robertson,et al.  A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[9]  Hans-Andrea Loeliger,et al.  Codes and iterative decoding on general graphs , 1995, Eur. Trans. Telecommun..

[10]  Pavel Panteleev,et al.  Degenerate Quantum LDPC Codes With Good Finite Length Performance , 2019, Quantum.

[11]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[12]  Ajay Dholakia,et al.  Reduced-complexity decoding of LDPC codes , 2005, IEEE Transactions on Communications.

[13]  Soon Xin Ng,et al.  Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies , 2015, IEEE Access.

[14]  E. Knill Group representations, error bases and quantum codes , 1996, quant-ph/9608049.

[15]  植松 友彦,et al.  Constructing Quantum Error-Correcting Codes for p^m-State Systems from Classical Error-Correcting Codes , 2000 .

[16]  David J. C. MacKay,et al.  Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.

[17]  E. Knill Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.

[18]  Jean-Pierre Tillich,et al.  A decoding algorithm for CSS codes using the X/Z correlations , 2014, 2014 IEEE International Symposium on Information Theory.

[19]  Ajay Dholakia,et al.  Efficient implementations of the sum-product algorithm for decoding LDPC codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[20]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[21]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[22]  D. Mackay,et al.  Evaluation of Gallager Codes for Short Block Length and High Rate Applications , 2001 .

[23]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[24]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[25]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[26]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[27]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[28]  L. Pryadko,et al.  Quantum Kronecker sum-product low-density parity-check codes with finite rate , 2012, 1212.6703.

[29]  G. Gadioli La Guardia,et al.  On the Construction of Nonbinary Quantum BCH Codes , 2012, IEEE Transactions on Information Theory.

[30]  David Declercq,et al.  Decoding Algorithms for Nonbinary LDPC Codes Over GF$(q)$ , 2007, IEEE Transactions on Communications.

[31]  David Poulin,et al.  On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..

[32]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[33]  Nithin Raveendran,et al.  Trapping Sets of Quantum LDPC Codes , 2020, Quantum.

[34]  Shu Lin,et al.  Iterative soft-decision decoding of reed-solomon codes of prime lengths , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[35]  H. Baranger,et al.  Decoherence by correlated noise and quantum error correction. , 2005, Physical review letters.

[36]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[37]  Krishna R. Narayanan,et al.  Iterative Soft-Input Soft-Output Decoding of Reed-Solomon Codes by Adapting the , 2005 .

[38]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[39]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[40]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[41]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[42]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[43]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[44]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[45]  Alex R. Rigby,et al.  Modified belief propagation decoders for quantum low-density parity-check codes , 2019, Physical Review A.

[46]  Amir H. Banihashemi,et al.  Improving belief propagation on graphs with cycles , 2004, IEEE Communications Letters.

[47]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[48]  David Poulin,et al.  Neural Belief-Propagation Decoders for Quantum Error-Correcting Codes. , 2018, Physical review letters.

[49]  Hideki Imai,et al.  Fixed Initialization Decoding of LDPC Codes Over a Binary Symmetric Channel , 2012, IEEE Transactions on Information Theory.

[50]  Martin Rötteler,et al.  Efficient Quantum Circuits for Non-qubit Quantum Error-correcting Codes , 2002 .

[51]  R. McEliece Finite Fields for Computer Scientists and Engineers , 1986 .

[52]  Jinghu Chen,et al.  Near optimum universal belief propagation based decoding of low-density parity check codes , 2002, IEEE Trans. Commun..

[53]  Robert J. McEliece,et al.  Iterative algebraic soft-decision list decoding of Reed-Solomon codes , 2005, IEEE Journal on Selected Areas in Communications.

[54]  Henk Wymeersch,et al.  Log-domain decoding of LDPC codes over GF(q) , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[55]  Baoming Bai,et al.  Enhanced Feedback Iterative Decoding of Sparse Quantum Codes , 2009, IEEE Transactions on Information Theory.

[56]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[57]  Ching-Yi Lai,et al.  Decoding of Quantum Data-Syndrome Codes via Belief Propagation , 2021, 2021 IEEE International Symposium on Information Theory (ISIT).

[58]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[59]  Markus Grassl,et al.  Quantum Reed-Solomon Codes , 1999, AAECC.

[60]  Ching-Yi Lai,et al.  Exploiting Degeneracy in Belief Propagation Decoding of Quantum Codes , 2021, ArXiv.