Sparse optimal stochastic control

In this paper, we investigate a sparse optimal control of continuous-time stochastic systems.We adopt the dynamic programming approach and analyze the optimal control via the value function. Due to the non-smoothness of the L cost functional, in general, the value function is not differentiable in the domain. Then, we characterize the value function as a viscosity solution to the associated Hamilton-Jacobi-Bellman (HJB) equation. Based on the result, we derive a necessary and sufficient condition for the L optimality, which immediately gives the optimal feedback map. Especially for control-affine systems, we consider the relationship with L optimal control problem and show an equivalence theorem.

[1]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[2]  Roland Herzog,et al.  Directional Sparsity in Optimal Control of Partial Differential Equations , 2012, SIAM J. Control. Optim..

[3]  Kenji Kashima,et al.  On Sparse Optimal Control for General Linear Systems , 2019, IEEE Transactions on Automatic Control.

[4]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[5]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[6]  H. Maurer,et al.  On L1‐minimization in optimal control and applications to robotics , 2006 .

[7]  Walter Alt,et al.  Linear‐quadratic control problems with L1‐control cost , 2015 .

[8]  Evangelos Theodorou,et al.  Stochastic L1-optimal control via forward and backward sampling , 2018, Syst. Control. Lett..

[9]  M. Nisio,et al.  Stochastic Control Theory: Dynamic Programming Principle , 2014 .

[10]  Nicolas Bouleau,et al.  Dirichlet Forms and Analysis on Wiener Space , 1991 .

[11]  Georg Stadler,et al.  Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..

[12]  Karl Kunisch,et al.  Measure Valued Directional Sparsity for Parabolic Optimal Control Problems , 2014, SIAM J. Control. Optim..

[13]  西尾 真喜子,et al.  Stochastic control theory : dynamic programming principle , 2015 .

[14]  Alex Olshevsky On a Relaxation of Time-Varying Actuator Placement , 2020, IEEE Control Systems Letters.

[15]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[16]  Kenji Kashima,et al.  Sparse optimal feedback control for continuous-time systems , 2019, 2019 18th European Control Conference (ECC).

[17]  Daniel E. Quevedo,et al.  Maximum Hands-Off Control: A Paradigm of Control Effort Minimization , 2014, IEEE Transactions on Automatic Control.

[18]  Jun-ichi Imura,et al.  Probabilistic evaluation of interconnectable capacity for wind power generation , 2014 .

[19]  Daniel E. Quevedo,et al.  Sparse Packetized Predictive Control for Networked Control Over Erasure Channels , 2013, IEEE Transactions on Automatic Control.

[20]  Shunsuke Ono,et al.  Discrete-Valued Control of Linear Time-Invariant Systems by Sum-of-Absolute-Values Optimization , 2017, IEEE Transactions on Automatic Control.

[21]  Kenji Kashima,et al.  Sparsity-Constrained Controllability Maximization With Application to Time-Varying Control Node Selection , 2018, IEEE Control Systems Letters.

[22]  Takuya Ikeda,et al.  Continuity of the Value Function for Stochastic Sparse Optimal Control , 2020 .

[23]  Kenji Kashima,et al.  Stable Process Approach to Analysis of Systems Under Heavy-Tailed Noise: Modeling and Stochastic Linearization , 2019, IEEE Transactions on Automatic Control.