Texture-based parametric active contour for target detection and tracking

In recent years, active contour models (ACM) have been considered as powerful tools for image segmentation and object tracking in computer vision and image processing applications. This article presents a new tracking method based on parametric active contour models. In the proposed method, a new pressure energy called “texture pressure energy” is added to the energy function of the parametric active contour model to detect and track a texture target object in a texture background. In this scheme, the texture features of the contour are calculated by a moment-based method. Then, by comparing these features with texture features of the target object, the contour curve is expanded or contracted to be adapted to the object boundaries. Experimental results show that the proposed method is more efficient and accurate in the tracking of objects compare to the traditional ones, when both object and background are textures in nature. © 2009 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 19, 187–198, 2009

[1]  I. Kunttu,et al.  Shape-based retrieval of industrial surface defects using angular radius Fourier descriptor , 2007 .

[2]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[3]  Demin Wang Unsupervised video segmentation based on watersheds and temporal tracking , 1998, IEEE Trans. Circuits Syst. Video Technol..

[4]  Yehoshua Y. Zeevi,et al.  Integrated active contours for texture segmentation , 2006, IEEE Transactions on Image Processing.

[5]  Wilson S. Geisler,et al.  Texture segmentation using Gabor modulation/demodulation , 1987, Pattern Recognit. Lett..

[6]  Robert Azencott,et al.  Texture Classification Using Windowed Fourier Filters , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Li Ma,et al.  Optimum Gabor filter design and local binary patterns for texture segmentation , 2008, Pattern Recognit. Lett..

[8]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ghassan Hamarneh,et al.  Active contour models: application to oral lesion detection in color images , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[10]  Chunming Li,et al.  Segmentation of edge preserving gradient vector flow: an approach toward automatically initializing and splitting of snakes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Éric Marchand,et al.  Efficient model-based tracking for robot vision , 2005, Adv. Robotics.

[13]  S. Ramakrishnan,et al.  Image texture classification using wavelet based curve fitting and probabilistic neural network , 2007 .

[14]  Dan Schonfeld,et al.  Fast object tracking using adaptive block matching , 2005, IEEE Transactions on Multimedia.

[15]  Yu Wei,et al.  Face contour tracking in video using active contour model , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[16]  Ju-Jang Lee,et al.  Real-time object tracking and segmentation using adaptive color snake model , 2005, 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005..

[17]  Demetri Terzopoulos,et al.  T-snakes: Topology adaptive snakes , 2000, Medical Image Anal..

[18]  Fabrizio Argenti,et al.  Fast algorithms for texture analysis using co-occurrence matrices , 1990 .

[19]  Robert S. Ledley,et al.  Texture discrimination using discrete cosine transformation shift-insensitive (DCTSIS) descriptors , 2000, Pattern Recognit..

[20]  Neil Davey,et al.  The recognition and analysis of animate objects using neural networks and active contour models , 2002, Neurocomputing.

[21]  John Porrill,et al.  Active region models for segmenting medical images , 1994, Proceedings of 1st International Conference on Image Processing.

[22]  Alessandro Neri,et al.  Model based rotation-invariant texture classification , 2002, Proceedings. International Conference on Image Processing.

[23]  DeLiang Wang,et al.  Texture segmentation using Gaussian-Markov random fields and neural oscillator networks , 2001, IEEE Trans. Neural Networks.

[24]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[25]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[26]  Yao Wang,et al.  Active mesh-a feature seeking and tracking image sequence representation scheme , 1994, IEEE Trans. Image Process..

[27]  Jacob Scharcanski,et al.  Stochastic texture image estimators for local spatial anisotropy and its variability , 2000, IEEE Trans. Instrum. Meas..

[28]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  A. David Marshall,et al.  A Hierarchical Model of Dynamics for Tracking People with a Single Video Camera , 2000, BMVC.

[30]  Georgios Tziritas,et al.  Colour and texture segmentation using wavelet frame analysis, deterministic relaxation, and fast marching algorithms , 2004, J. Vis. Commun. Image Represent..

[31]  A. Murat Tekalp,et al.  Optimal 2-D hierarchical content-based mesh design and update for object-based video , 2000, IEEE Trans. Circuits Syst. Video Technol..

[32]  Anil K. Jain,et al.  Texture Segmentation Using Voronoi Polygons , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Mohsen Ashourian,et al.  Robust and Fast Tracking Algorithm in Video Sequences by Adaptive Window sizing Using a Novel Analysis on Spatiotemporal Gradient Powers , 2007, J. Circuits Syst. Comput..

[34]  Steve R. Gunn,et al.  A Robust Snake Implementation; A Dual Active Contour , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Hanspeter Schaub,et al.  Color snakes for dynamic lighting conditions on mobile manipulation platforms , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[36]  Ferran Marqués,et al.  Region-based representations of image and video: segmentation tools for multimedia services , 1999, IEEE Trans. Circuits Syst. Video Technol..

[37]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[38]  Narendra Ahuja,et al.  Shape From Texture: Integrating Texture-Element Extraction and Surface Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[40]  Mubarak Shah,et al.  A Fast algorithm for active contours and curvature estimation , 1992, CVGIP Image Underst..

[41]  Jacob D. Furst,et al.  A co-occurrence texture semi-invariance to direction, distance, and patient size , 2008, SPIE Medical Imaging.

[42]  Wael Abd-Almageed,et al.  Active Deformable Models Using Density Estimation , 2004, Int. J. Image Graph..

[43]  Mihran Tucceryan,et al.  Moment-based texture segmentation , 1994 .

[44]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Shiaofen Fang,et al.  Medical volume segmentation using bank of Gabor filters , 2009, SAC '09.

[46]  Lance M. Kaplan Extended fractal analysis for texture classification and segmentation , 1999, IEEE Trans. Image Process..