On Metastability in FPU

We present an analytical study of the Fermi–Pasta–Ulam (FPU) α–model with periodic boundary conditions. We analyze the dynamics corresponding to initial data with one low frequency Fourier mode excited. We show that, correspondingly, a pair of KdV equations constitute the resonant normal form of the system. We also use such a normal form in order to prove the existence of a metastability phenomenon. More precisely, we show that the time average of the modal energy spectrum rapidly attains a well defined distribution corresponding to a packet of low frequencies modes. Subsequently, the distribution remains unchanged up to the time scales of validity of our approximation. The phenomenon is controlled by the specific energy.

[1]  R. D. Pierce,et al.  On the validity of mean-field amplitude equations for counterpropagating wavetrains , 1994, patt-sol/9411002.

[2]  L. Galgani,et al.  Planck's formula and glassy behavior in classical nonequilibrium statistical mechanics , 2000 .

[3]  Robert L. Pego,et al.  Solitary waves on FPU lattices: II. Linear implies nonlinear stability , 2002 .

[4]  Stephanos Venakides,et al.  The zero dispersion limit of the Korteweg-de Vries equation with periodic initial data , 1987 .

[5]  D. Bambusi Galerkin averaging method and Poincaré normal form for some quasilinear PDEs , 2005 .

[6]  Bob Rink Symmetry and Resonance in Periodic FPU Chains , 2001 .

[7]  A. Ponno The Fermi-Pasta-Ulam Problem in the Thermodynamic Limit , 2005 .

[8]  P. Kramer,et al.  Stages of Energy Transfer in the FPU Model , 2002, nlin/0210008.

[9]  Dario Bambusi,et al.  An Averaging Theorem for Quasilinear Hamiltonian PDEs , 2003 .

[10]  Dario Bambusi,et al.  Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations , 1999 .

[11]  L. Galgani,et al.  Planck-like Distributions in Classical Nonlinear Mechanics , 1972 .

[12]  Bob Rink Symmetric invariant manifolds in the Fermi–Pasta–Ulam lattice , 2003 .

[13]  A. Fink Almost Periodic Differential Equations , 1974 .

[14]  V. Zakharov,et al.  Is free-surface hydrodynamics an integrable system? , 1994 .

[15]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[16]  Walter Craig,et al.  Numerical simulation of gravity waves , 1993 .

[17]  Robert L. Pego,et al.  Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit , 1999 .

[18]  D. Bambusi,et al.  Korteweg-de Vries equation and energy sharing in Fermi-Pasta-Ulam. , 2005, Chaos.

[19]  D. Bambusi,et al.  ENERGY CASCADE IN FERMI-PASTA-ULAM MODELS , 2005 .

[20]  M. Pettini,et al.  Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[21]  L. Galgani,et al.  The Fermi-Pasta-Ulam problem as a challenge for the foundations of physics. , 2005, Chaos.

[22]  V. Marchenko Sturm-Liouville Operators and Applications , 1986 .

[23]  L. Galgani,et al.  On the Specific Heat of Fermi–Pasta–Ulam Systems and Their Glassy Behavior , 1999 .

[24]  A. Carati,et al.  The nonlinear Schrödinger equation as a resonant normal form , 2001 .

[25]  Robert L. Pego,et al.  Solitary waves on Fermi Pasta Ulam lattices: III. Howland-type Floquet theory , 2004 .

[26]  B. Chirikov,et al.  Statistical Properties of a Nonlinear String , 1966 .

[27]  Vulpiani,et al.  Further results on the equipartition threshold in large nonlinear Hamiltonian systems. , 1985, Physical review. A, General physics.

[28]  D. Bambusi,et al.  Normal form and exponential stability for some nonlinear string equations , 2001 .

[29]  D L Shepelyansky,et al.  Low-energy chaos in the Fermi-Pasta-Ulam problem , 1996 .

[30]  L. Peliti,et al.  Approach to equilibrium in a chain of nonlinear oscillators , 1982 .

[31]  L. Galgani,et al.  Localization of energy in FPU chains , 2004 .

[32]  P. Worfolk,et al.  An integrable normal form for water waves in infinite depth , 1995 .

[33]  D. Bambusi,et al.  Quasi periodic breathers in Hamiltonian lattices with symmetries , 2002 .

[34]  Robert L. Pego,et al.  Solitary waves on Fermi-Pasta-Ulam lattices: IV. Proof of stability at low energy , 2004 .

[35]  A. Ponno Soliton theory and the Fermi-Pasta-Ulam problem in the thermodynamic limit , 2003 .

[36]  D. Bambusi,et al.  A property of exponential stability in nonlinear wave equations near the fundamental linear mode , 1998 .

[37]  Simone Paleari,et al.  Exponentially long times to equipartition in the thermodynamic limit , 2004 .