Resonances of Periodic orbits in RÖssler System in Presence of a Triple-Zero bifurcation
暂无分享,去创建一个
[1] O. Rössler. CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .
[2] D Michelson,et al. Steady solutions of the Kuramoto-Sivashinsky equation , 1986 .
[3] Christopher K McCord. Uniqueness of Connecting Orbits in the Equation Y(3) = Y2 - 1. , 1986 .
[4] Antonio Algaba,et al. Some Results on Chua's equation Near a Triple-Zero Linear Degeneracy , 2003, Int. J. Bifurc. Chaos.
[5] Alejandro J. Rodríguez-Luis,et al. A Note on the Triple-Zero Linear Degeneracy: Normal Forms, Dynamical and bifurcation Behaviors of an Unfolding , 2002, Int. J. Bifurc. Chaos.
[6] Bernd Krauskopf,et al. Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity , 2003 .
[7] Emilio Freire,et al. Hypernormal Form for the Hopf-Zero Bifurcation , 1998 .
[8] John N. Elgin,et al. Noose bifurcation of periodic orbits , 1991 .
[9] Freddy Dumortier,et al. New aspects in the unfolding of the nilpotent singularity of codimension three , 2001 .
[10] Vivien Kirk,et al. Merging of resonance tongues , 1993 .