Well-Posedness of Vortex Sheets with Surface Tension

We study the initial value problem for two-dimensional, periodic vortex sheets with surface tension. We allow the upper and lower fluids to have different densities. Without surface tension, the vortex sheet is ill-posed: it exhibits the well-known Kelvin--Helmholtz instability. In the linearized equations of motion, surface tension removes the instability. It has been conjectured that surface tension also makes the full problem well-posed. We prove that this conjecture is correct using energy methods. In particular, for the initial value problem for vortex sheets with surface tension with sufficiently smooth data, it is proved that solutions exist locally in time, are unique, and depend continuously on the initial data. The analysis uses two important ideas from the numerical work of Hou, Lowengrub, and Shelley. First, the tangent angle and arclength of the vortex sheet are used rather than Cartesian variables. Second, instead of a purely Lagrangian formulation, a special tangential velocity is used in o...

[1]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 3-D , 1999 .

[2]  Guido Schneider,et al.  The long‐wave limit for the water wave problem I. The case of zero surface tension , 2000 .

[3]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 2-D , 1997 .

[4]  L. N. Sretenskii A Cauchy-Poisson problem , 1971 .

[5]  Hideaki Yosihara Capillary-gravity waves for an incompressible ideal fluid , 1983 .

[6]  Walter Craig,et al.  An existence theory for water waves and the boussinesq and korteweg-devries scaling limits , 1985 .

[7]  Z. Xin,et al.  Existence of Vortex Sheets with¶Reflection Symmetry in Two Space Dimensions , 2001 .

[8]  T. Hou,et al.  A Nearly Optimal Existence Result for Slightly Perturbed 3-D Vortex Sheets , 2003 .

[9]  Tadayoshi Kano,et al.  Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde , 1979 .

[10]  Qing Nie,et al.  The nonlinear evolution of vortex sheets with surface tension in axisymmetric flows , 2001 .

[11]  Y. Kaneda,et al.  Singularity formation in three-dimensional motion of a vortex sheet , 1995, Journal of Fluid Mechanics.

[12]  Daniel Coutand,et al.  Well-posedness of the free-surface incompressible Euler equations with or without surface tension , 2005 .

[13]  Lagrangian theory for 3D vortex sheets with axial or helical symmetry , 1992 .

[14]  N. Tanaka,et al.  On the two-phase free boundary problem for two-dimensional water waves , 1997 .

[15]  Hideaki Yosihara,et al.  Gravity Waves on the Free Surface of an Incompressible Perfect Fluid of Finite Depth , 1982 .

[16]  Uriel Frisch,et al.  Finite time analyticity for the two and three dimensional Kelvin-Helmholtz instability , 1981 .

[17]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[18]  Ben Schweizer,et al.  On the three-dimensional Euler equations with a free boundary subject to surface tension , 2005 .

[19]  G. Lebeau Régularité du problème de Kelvin–Helmholtz pour l’équation d’Euler 2D , 2001 .

[20]  Well Posedness for the Motion of a Compressible Liquid with Free Surface Boundary , 2005, math/0504339.

[21]  D. Christodoulou,et al.  S E M I N A I R E E quations aux , 2008 .

[22]  David J. Haroldsen,et al.  Numerical Calculation of Three-Dimensional Interfacial Potential Flows Using the Point Vortex Method , 1998, SIAM J. Sci. Comput..

[23]  Steven A. Orszag,et al.  Generalized vortex methods for free-surface flow problems , 1982, Journal of Fluid Mechanics.

[24]  David Lannes,et al.  Well-posedness of the water-waves equations , 2005 .

[25]  Russel E. Caflisch,et al.  Long time existence for a slightly perturbed vortex sheet , 1986 .

[26]  R. Caflisch,et al.  The collapse of an axi-symmetric, swirling vortex sheet , 1993 .

[27]  Thomas Y. Hou,et al.  The long-time motion of vortex sheets with surface tension , 1997 .

[28]  Steven Schochet,et al.  The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation , 1995 .

[29]  J. Delort Existence de nappes de tourbillon en dimension deux , 1991 .

[30]  Nader Masmoudi,et al.  The zero surface tension limit two‐dimensional water waves , 2005 .

[31]  G. Folland Introduction to Partial Differential Equations , 1976 .

[32]  Pingwen Zhang,et al.  Convergence of a boundary integral method for 3-D water waves , 2001 .

[33]  D. W. Moore,et al.  The spontaneous appearance of a singularity in the shape of an evolving vortex sheet , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[34]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[35]  T. Hou,et al.  Singularity formation in three-dimensional vortex sheets , 2001 .

[36]  L. Evans,et al.  Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity , 1994 .