Well-Posedness of Vortex Sheets with Surface Tension
暂无分享,去创建一个
[1] Sijue Wu,et al. Well-posedness in Sobolev spaces of the full water wave problem in 3-D , 1999 .
[2] Guido Schneider,et al. The long‐wave limit for the water wave problem I. The case of zero surface tension , 2000 .
[3] Sijue Wu,et al. Well-posedness in Sobolev spaces of the full water wave problem in 2-D , 1997 .
[4] L. N. Sretenskii. A Cauchy-Poisson problem , 1971 .
[5] Hideaki Yosihara. Capillary-gravity waves for an incompressible ideal fluid , 1983 .
[6] Walter Craig,et al. An existence theory for water waves and the boussinesq and korteweg-devries scaling limits , 1985 .
[7] Z. Xin,et al. Existence of Vortex Sheets with¶Reflection Symmetry in Two Space Dimensions , 2001 .
[8] T. Hou,et al. A Nearly Optimal Existence Result for Slightly Perturbed 3-D Vortex Sheets , 2003 .
[9] Tadayoshi Kano,et al. Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde , 1979 .
[10] Qing Nie,et al. The nonlinear evolution of vortex sheets with surface tension in axisymmetric flows , 2001 .
[11] Y. Kaneda,et al. Singularity formation in three-dimensional motion of a vortex sheet , 1995, Journal of Fluid Mechanics.
[12] Daniel Coutand,et al. Well-posedness of the free-surface incompressible Euler equations with or without surface tension , 2005 .
[13] Lagrangian theory for 3D vortex sheets with axial or helical symmetry , 1992 .
[14] N. Tanaka,et al. On the two-phase free boundary problem for two-dimensional water waves , 1997 .
[15] Hideaki Yosihara,et al. Gravity Waves on the Free Surface of an Incompressible Perfect Fluid of Finite Depth , 1982 .
[16] Uriel Frisch,et al. Finite time analyticity for the two and three dimensional Kelvin-Helmholtz instability , 1981 .
[17] G. Pedrizzetti,et al. Vortex Dynamics , 2011 .
[18] Ben Schweizer,et al. On the three-dimensional Euler equations with a free boundary subject to surface tension , 2005 .
[19] G. Lebeau. Régularité du problème de Kelvin–Helmholtz pour l’équation d’Euler 2D , 2001 .
[20] Well Posedness for the Motion of a Compressible Liquid with Free Surface Boundary , 2005, math/0504339.
[21] D. Christodoulou,et al. S E M I N A I R E E quations aux , 2008 .
[22] David J. Haroldsen,et al. Numerical Calculation of Three-Dimensional Interfacial Potential Flows Using the Point Vortex Method , 1998, SIAM J. Sci. Comput..
[23] Steven A. Orszag,et al. Generalized vortex methods for free-surface flow problems , 1982, Journal of Fluid Mechanics.
[24] David Lannes,et al. Well-posedness of the water-waves equations , 2005 .
[25] Russel E. Caflisch,et al. Long time existence for a slightly perturbed vortex sheet , 1986 .
[26] R. Caflisch,et al. The collapse of an axi-symmetric, swirling vortex sheet , 1993 .
[27] Thomas Y. Hou,et al. The long-time motion of vortex sheets with surface tension , 1997 .
[28] Steven Schochet,et al. The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation , 1995 .
[29] J. Delort. Existence de nappes de tourbillon en dimension deux , 1991 .
[30] Nader Masmoudi,et al. The zero surface tension limit two‐dimensional water waves , 2005 .
[31] G. Folland. Introduction to Partial Differential Equations , 1976 .
[32] Pingwen Zhang,et al. Convergence of a boundary integral method for 3-D water waves , 2001 .
[33] D. W. Moore,et al. The spontaneous appearance of a singularity in the shape of an evolving vortex sheet , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[34] T. Hou,et al. Removing the stiffness from interfacial flows with surface tension , 1994 .
[35] T. Hou,et al. Singularity formation in three-dimensional vortex sheets , 2001 .
[36] L. Evans,et al. Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity , 1994 .