Influence of a magnetic field on the electrodeposition of nickel–iron alloys

Abstract The electrodeposition of nickel–iron alloys is studied under the influence of a superimposed external static magnetic field. It is shown that the direction of the magnetic field with regard to the electric field affects the electrodeposition process (current efficiency, composition and morphology of the layers). Furthermore, the influence of the simultaneous action of natural and magnetically driven convection is discussed in function of the orientation of the working electrode. The electrochemical quartz crystal microbalance (EQCM) technique is used to determine the partial current due to the hydrogen evolution reaction (HER). It is observed that the magnetic field applied perpendicular to the electric field lines increases the rate of the HER, while no significant variation is observed in a magnetic field parallel to the electric field.

[1]  J. Shannon,et al.  A statistical analysis of the electrodeposition of nickel in the presence of a magnetic field , 1999 .

[2]  W. Schwarzacher Kinetic roughening of electrodeposited films , 2004 .

[3]  T. Fahidy,et al.  The effect of magnetic fields on natural convective mass transport at inclined circular disk electrodes , 1980 .

[4]  O. Jbara,et al.  Magnetic field effects on Ni–Fe alloys codeposition , 2004 .

[5]  G. Zangari,et al.  Alloy electrodeposition for electronic applications , 1994 .

[6]  R. Aogaki Micro-MHD effect on electrodeposition in the vertical magnetic field , 2003 .

[7]  T. Fahidy Characteristics of surfaces produced via magnetoelectrolytic deposition , 2001 .

[8]  A. Bund,et al.  Anomalous scaling of iron thin film electrodeposited in a magnetic field , 2006 .

[9]  K. Jüttner,et al.  EQCM study of iron deposition from FeII/FeIII (EDTA) solutions , 1998 .

[10]  G. Zangari,et al.  Electrocatalytic Properties of Ni-Based Alloys Toward Hydrogen Evolution Reaction in Acid Media , 2003 .

[11]  Signal oscillations of a piezoelectric quartz crystal in liquids caused by compressional waves , 1998 .

[12]  V. Kieling,et al.  Parameters influencing the electrodeposition of Ni-Fe alloys , 1997 .

[13]  D. Bograchev,et al.  Effect of Uniform Magnetic Field on the Stability of the Rayleigh-Benard Convection in a Binary Electrolyte: A Theoretical Analysis , 2005 .

[14]  D. Landolt,et al.  The influence of boric acid and sulfate ions on the hydrogen formation in NiFe plating electrolytes , 2000 .

[15]  C. Tobias,et al.  A Mathematical Model for Anomalous Codeposition of Nickel‐Iron on a Rotating Disk Electrode , 1989 .

[16]  Y. Fukunaka,et al.  Effect of gravitational strength on nucleation phenomena of electrodeposited copper onto a TiN substrate , 2003 .

[17]  H. Matsushima,et al.  AFM Observation for Iron Thin Films Electrodeposited in Magnetic Fields , 2004 .

[18]  E. Frykberg,et al.  Triage: Principles and Practice , 2005, Scandinavian journal of surgery : SJS : official organ for the Finnish Surgical Society and the Scandinavian Surgical Society.

[19]  G. Hinds,et al.  Effect of a Magnetic Field on Electrodeposition: Chronoamperometry of Ag, Cu, Zn, and Bi , 2001 .

[20]  I. Tabaković,et al.  Effect of Magnetic Field on Electrode Reactions and Properties of Electrodeposited NiFe Films , 2003 .

[21]  J. Horkans Effect of Plating Parameters on Electrodeposited NiFe , 1981 .

[22]  A. Sugiyama,et al.  Nano-scale crystal formation in copper magneto-electrodeposition under parallel magnetic fields , 2004 .

[23]  O. Magnussen,et al.  Electrochemical Quartz Crystal Microbalance Study on the Kinetics of Nickel Monolayer and Multilayer Electrodeposition on (111)-Oriented Gold Films , 2000 .

[24]  A. Hillman,et al.  Detection of electrolytically generated bubbles using an electrochemical quartz crystal microbalance , 1989 .

[25]  R. Aogaki Instability of nonequilibrium fluctuation in electrochemical nucleation. I. Occurrence of instability , 1995 .

[26]  D. Bograchev,et al.  Determination of Mass Coefficients of Ions in a Quantitative Analysis of the Effect of Natural Convection on Electrochemical Processes , 2005 .

[27]  Y. Oshikiri,et al.  Electrochemical Reaction in a High Gravity Field Parallel to Electrode Surface-Analysis of Electron Transfer Process by Gravity Electrode , 2003 .

[28]  M. Pritzker,et al.  Model for Nickel‐Iron Alloy Electrodeposition on a Rotating Disk Electrode , 1997 .

[29]  G. Hinds,et al.  Magnetic Field Effects on Copper Electrolysis , 2001 .

[30]  D. Landolt Electrochemical and materials science aspects of alloy deposition , 1994 .

[31]  N. Leventis,et al.  Demonstration of the elusive concentration-gradient paramagnetic force. , 2005, Journal of the American Chemical Society.

[32]  J. Szpunar,et al.  A Monte Carlo simulation approach to the texture formation during electrodeposition—I. The simulation model , 1997 .

[33]  A. Bund,et al.  Magnetic field effects in electrochemical reactions , 2003 .

[34]  I. Ohno,et al.  The effect of a magnetic field on the electrodeposition of iron-nickel alloy , 1975 .

[35]  J. Selman,et al.  Ionic mass transfer during electrochemical dissolution of Li metal in PC electrolyte solution , 2005 .

[36]  A. Bund,et al.  Investigations on metal depositions and dissolutions with an improved EQCMB based on quartz crystal impedance measurements , 2000 .

[37]  Y. Kondo,et al.  Studies on the velocity profile in natural convection during copper deposition at vertical cathodes , 1976 .

[38]  Ingrid Fritsch,et al.  Use of paired, bonded NdFeB magnets in redox magnetohydrodynamics. , 2005, Analytical chemistry.

[39]  M. Matlosz Competitive adsorption effects in the electrodeposition of iron-nickel alloys , 1993 .

[40]  J. Chopart,et al.  Magnetic Field Effects on Nickel Electrodeposition , 1998 .

[41]  J. Selman,et al.  Measurement of concentration boundary layer thickness development during lithium electrodeposition onto a lithium metal cathode in propylene carbonate , 2003 .

[42]  N. Leventis,et al.  Nd-Fe-B permanent magnet electrodes. Theoretical evaluation and experimental demonstration of the paramagnetic body forces. , 2002, Journal of the American Chemical Society.

[43]  H. White,et al.  Electrochemically Generated Magnetic Forces. Enhanced Transport of a Paramagnetic Redox Species in Large, Nonuniform Magnetic Fields , 1998 .

[44]  H. Dahms,et al.  The Anomalous Codeposition of Iron‐Nickel Alloys , 1965 .

[45]  H. Matsushima,et al.  Effects of magnetic fields on iron electrodeposition , 2004 .

[46]  A. Bund,et al.  Influence of a static magnetic field on nickel electrodeposition studied using an electrochemical quartz crystal microbalance, atomic force microscopy and vibrating sample magnetometry , 2005 .