An expedient preparation of enantio‐enriched ambergris odorants starting from commercial ionone alpha

We report the enantioselective synthesis of the ambergris odorants (+)-(S)-γ-ionone, (+)-(S)-γ-dihydroionone, (−)-α-ambrinol, (+)-(S)-γ-coronal, (−)-(S)-γ-homocyclogeranyl chloride and (+)-(S)-γ-homocyclogeraniol. At first, the enantio-enriched (4R,6S)-4-acetoxy-γ-ionone was prepared starting from commercial racemic ionone alpha by means of a chemo-enzymatic process. This chiral building block was then converted into (S)-γ-dihydroionone which was used as the starting material for the synthesis of the aforementioned odorants. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  P. Arteaga,et al.  Use of the Plant Bellardia trixago for the Enantiospecific Synthesis of Odorant Products , 2011, Natural Product Communications.

[2]  Araceli G. Campaña,et al.  Titanium‐Catalyzed Enantioselective Synthesis of α‐Ambrinol , 2008 .

[3]  E. Brenna,et al.  Two easy photochemical methods for the conversion of commercial ionone alpha into regioisomerically enriched γ‐ionone and γ‐dihydroionone , 2007 .

[4]  E. Brenna,et al.  Synthesis, Olfactory Evaluation, and Determination of the Absolute Configuration of the 3,4-Didehydroionone Stereoisomers , 2006 .

[5]  T. Kitahara,et al.  Analysis of ambergris tincture , 2005 .

[6]  E. Brenna,et al.  Optically Active Ionones and Derivatives: Preparation and Olfactory Properties , 2002 .

[7]  C. Fuganti,et al.  Synthesis and Olfactory Evaluation of (+)- and (-)-gamma-Ionone , 2000 .

[8]  K. Mori,et al.  Enzymatic resolution of (±)-γ-cyclohomogeraniol and conversion of its (S)-Isomer to (S)-γ-coronal, the ambergris odorant , 1999 .

[9]  N. Kongkathip,et al.  Stereospecific Total Synthesis of Amberketal and a Homologue , 1999 .

[10]  E. Brenna,et al.  Lipase-mediated synthesis of the enantiomeric forms of 4,5-epoxy-4,5-dihydro-α-ionone and 5,6-epoxy-5,6-dihydro-β-ionone. A new direct access to enantiopure (R)- and (S)-α-ionone , 1999 .

[11]  T. Oritani,et al.  First Synthesis of (+)-?-Coronal , 1997 .

[12]  Ho-Jung Kang,et al.  New Method of Generating Trifluoroperoxyacetic Acid for the Baeyer- Villiger Reaction. , 1996 .

[13]  G. Vidari,et al.  Saponaceolides: Differential cytotoxicity and enantioselective synthesis of the right-hand lactone moiety , 1995 .

[14]  P. Krogsgaard‐Larsen,et al.  Synthesis of Mono- and Sesqui-terpenoids. XXI. Synthesis and Absolute Configuration of (E)-3-Formyl-(2,6,6-trimethyl-2-cyclohexenyl)-3-pentenal, a Sesquiterpenoid from a Marine Alga, Caulerpa ashmeadii. , 1992 .

[15]  P. Naegeli,et al.  Enantiodifferentiation of odour perception of α-ambrinols , 1992 .

[16]  K. Mori,et al.  Triterpenoid total synthesis. I: Synthesis of ambrein and ambrox , 1990 .

[17]  D. Barton,et al.  The invention of new radical chain reactions. Part VIII. Radical chemistry of thiohydroxamic esters; A new method for the generation of carbon radicals from carboxylic acids , 1985 .

[18]  M. Matsui,et al.  New Synthesis of γ-Homocyclogeranial, γ-Dihydroionone and Their Derivatives , 1984 .

[19]  G. Ohloff 15 – The Fragrance of Ambergris , 1982 .

[20]  TakazawaOsamu,et al.  SYNTHESIS OF (±)-α-AMBRINOL , 1980 .

[21]  Karl H. Schulte‐Elte,et al.  Zur Stereochemie der Geruchswahrnehmung von 1-Dekalon-Derivaten und ihren oxaanalogen Verbindungen , 1976 .

[22]  A. Eschenmoser,et al.  Synthese und Stereochemie der isomeren Ambrinole , 1959 .

[23]  C. Seidel,et al.  Über die flüchtigen Bestandteile des grauen Ambra. 3. Mitteilung. Isolierung und Identifizierung von γ‐Cyclohomogeraniol im grauen Ambra. Synthese von l,l‐Dimethyl‐2‐(β‐hydroxyäthyl)‐3‐methylen‐cyclohexan (γ‐Cyclo‐homo‐geraniol) und l,l‐Dimethyl‐2‐(γ‐hydroxypropyl)‐3‐methylen‐cyclohexan , 1957 .

[24]  M. Stoll,et al.  Odeur et Constitution XV. Cyclisation de la dihydro-γ-ionone , 1955 .