Axonal bifurcation in the visual system

[1]  P. D. Spear,et al.  Single thalamic neurons project to both lateral suprasylvian visual cortex and area 17: A retrograde fluorescent double‐labeling study , 1986, The Journal of comparative neurology.

[2]  R. Mooney,et al.  The structural and functional characteristics of striate cortical neurons that innervate the superior colliculus and lateral posterior nucleus in hamster , 1986, Neuroscience.

[3]  D. Whitteridge,et al.  Innervation of cat visual areas 17 and 18 by physiologically identified X‐ and Y‐ type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements , 1985, The Journal of comparative neurology.

[4]  H. Kennedy,et al.  A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[6]  Y. Fukuda,et al.  Axonal projections of X-cells to the superior colliculus and to the nucleus of the optic tract in cats , 1985, Brain Research.

[7]  G M Innocenti,et al.  Comparison of the distributions of ipsilaterally and contralaterally projecting corticocortical neurons in cat visual cortex using two fluorescent tracers , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  R. W. Rodieck,et al.  Central projections of cat retinal ganglion cells , 1985, The Journal of comparative neurology.

[9]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[10]  A. L. Humphrey,et al.  Projection patterns of individual X‐ and Y‐cell axons from the lateral geniculate nucleus to cortical area 17 in the cat , 1985, The Journal of comparative neurology.

[11]  A. L. Humphrey,et al.  Termination patterns of individual X‐ and Y‐cell axons in the visual cortex of the cat: Projections to area 18, to the 17/18 border region, and to both areas 17 and 18 , 1985, The Journal of comparative neurology.

[12]  R. Andersen,et al.  Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: A study using retrogradely transported fluorescent dyes , 1985, The Journal of comparative neurology.

[13]  A. Rosenquist,et al.  Laminar origins of visual corticocortical connections in the cat , 1984, The Journal of comparative neurology.

[14]  J Bullier,et al.  Branching and laminar origin of projections between visual cortical areas in the cat , 1984, The Journal of comparative neurology.

[15]  J Bullier,et al.  Bifurcation of subcortical afferents to visual areas 17, 18, and 19 in the cat cortex , 1984, The Journal of comparative neurology.

[16]  P S Goldman-Rakic,et al.  Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: Relation between intraparietal and principal sulcal cortex , 1984, The Journal of comparative neurology.

[17]  A. Rosenquist,et al.  The projections of single thalamic neurons onto multiple visual cortical areas in the cat , 1984, Brain Research.

[18]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[20]  J. T. Weber,et al.  Interhemispheric and subcortical collaterals of single cortical neurons in the adult cat , 1983, Brain Research.

[21]  G. Mower,et al.  Cat visual corticopontine cells project to the superior colliculus , 1983, Brain Research.

[22]  M Sur,et al.  Retinogeniculate terminations in cats: morphological differences between X and Y cell axons. , 1982, Science.

[23]  R. Spreafico,et al.  Thalamic projections to the primary and secondary somatosensory cortices in cat: Single and double retrograde tracer studies , 1981, The Journal of comparative neurology.

[24]  H. Wässle,et al.  The retinal projection to the thalamus in the cat: A quantitative investigation and a comparison with the retinotectal pathway , 1981, The Journal of comparative neurology.

[25]  P. Lennie Parallel visual pathways: A review , 1980, Vision Research.

[26]  R. Illing Axonal bifurcation of cat retinal ganglion cells as demonstrated by retrograde double labelling with fluorescent dyes , 1980, Neuroscience Letters.

[27]  C. R. Michael,et al.  Projection patterns of single physiologically characterized optic tract fibres in cat , 1980, Nature.

[28]  E. Geisert,et al.  Cortical projections of the lateral geniculate nucleus in the cat , 1980, The Journal of comparative neurology.

[29]  H. Wässle,et al.  The retinal projection to the superior colliculus in the cat: A quantitative study with HRP , 1980, The Journal of comparative neurology.

[30]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[31]  Jonathan Stone,et al.  Hierarchical and parallel mechanisms in the organization of visual cortex , 1979, Brain Research Reviews.

[32]  L. Benevento,et al.  A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey , 1979, Brain Research.

[33]  S. Zeki Functional specialisation in the visual cortex of the rhesus monkey , 1978, Nature.

[34]  A. Hendrickson,et al.  The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey , 1977, Brain Research.

[35]  J. Malpeli,et al.  The effect of striate cortex cooling on area 18 cells in the monkey , 1977, Brain Research.

[36]  W. R. Levick,et al.  Form and function of cat retinal ganglion cells , 1975, Nature.

[37]  E. Jones,et al.  Retrograde axonal transport and the demonstration of non‐specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey , 1974, The Journal of comparative neurology.

[38]  I. Parnas,et al.  Differential flow of information into branches of a single axon. , 1973, Brain research.

[39]  J. Stone,et al.  Projection of X- and Y-cells of the cat's lateral geniculate nucleus to areas 17 and 18 of visual cortex. , 1973, Journal of neurophysiology.

[40]  K. Hoffmann,et al.  Conduction velocity in pathways from retina to superior colliculus in the cat: a correlation with receptive-field properties. , 1973, Journal of neurophysiology.

[41]  D. V. Essen,et al.  The contribution of membrane hyperpolarization to adaptation and conduction block in sensory neurones of the leech. , 1973 .

[42]  W. Burke,et al.  Discharge patterns of principal cells and interneurones in lateral geniculate nucleus of rat , 1966, The Journal of physiology.

[43]  R. Morison,et al.  A STUDY OF THALAMO-CORTICAL RELATIONS , 1941 .

[44]  J. Kaas,et al.  Corticocortical and collateral thalamocortical connections of postcentral somatosensory cortical areas in squirrel monkeys: a double-labeling study with radiolabeled wheatgerm agglutinin and wheatgerm agglutinin conjugated to horseradish peroxidase. , 1985, Somatosensory research.

[45]  T. Imig,et al.  Organization of the thalamocortical auditory system in the cat. , 1983, Annual review of neuroscience.