A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment

[1]  François Anctil,et al.  Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models , 2004, Environ. Model. Softw..

[2]  John R. Williams,et al.  LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT 1 , 1998 .

[3]  D W Smith,et al.  Neural networks modelling of streamflow, phosphorus, and suspended solids: application to the Canadian Boreal forest. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[4]  Bernard Bobée,et al.  Prévision hydrologique par réseaux de neurones artificiels : état de l'art , 1999 .

[5]  R Govindaraju,et al.  ARTIFICIAL NEURAL NETWORKS IN HYDROLOGY: II, HYDROLOGIC APPLICATIONS , 2000 .

[6]  V. Klemeš,et al.  Operational Testing of Hydrological Simulation Models , 2022 .

[7]  null null,et al.  Artificial Neural Networks in Hydrology. II: Hydrologic Applications , 2000 .

[8]  Holger R. Maier,et al.  Optimal division of data for neural network models in water resources applications , 2002 .

[9]  S. Sogon,et al.  Estimation of sediment yield and soil loss using suspended sediment load and 137Cs measurements on agricultural land, Brie Plateau, France , 1999, Hydrobiologia.

[10]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[11]  François Anctil,et al.  Characterization of soil moisture conditions at temporal scales from a few days to annual , 2004 .

[12]  François Anctil,et al.  Evaluation of Neural Network Streamflow Forecasting on 47 Watersheds , 2005 .

[13]  Spectral and cross-spectral analysis of three hydrological systems , 2000 .

[14]  Asaad Y. Shamseldin,et al.  Modification of the probability-distributed interacting storage capacity model , 1999 .

[15]  V. Gomendy Variabilités spatiale et temporelle des propriétés structurales et hydriques des horizons de surface de la couverture limoneuse du bassin versant d'Orgeval (Brie) , 1996 .

[16]  James M. Ehrman,et al.  Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers , 1998 .

[17]  Holger R. Maier,et al.  Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications , 2000, Environ. Model. Softw..

[18]  G. Billen,et al.  Nitrate dynamics in artificially drained nested watersheds , 2011 .

[19]  Anthony J. Jakeman,et al.  A review of erosion and sediment transport models , 2003, Environ. Model. Softw..

[20]  Jeffrey G. Arnold,et al.  The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions , 2007 .

[21]  M. Starr,et al.  An application of artificial neural networks to carbon, nitrogen and phosphorus concentrations in three boreal streams and impacts of climate change , 2006 .

[22]  S. Lek,et al.  Predicting phosphorus concentration and phosphorus load from watershed characteristics using backpropagation neural networks , 1996 .

[23]  N. Null Artificial Neural Networks in Hydrology. I: Preliminary Concepts , 2000 .

[24]  J. Arnold,et al.  SWAT2000: current capabilities and research opportunities in applied watershed modelling , 2005 .

[25]  Teuvo Kohonen,et al.  Self-Organizing Maps, Second Edition , 1997, Springer Series in Information Sciences.

[26]  Kwok-wing Chau,et al.  A review on integration of artificial intelligence into water quality modelling. , 2006, Marine pollution bulletin.

[27]  A. Sarangi,et al.  Comparison of Artificial Neural Network and regression models for sediment loss prediction from Banha watershed in India , 2005 .

[28]  Xixi Lu,et al.  Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China , 2007 .

[29]  J. Wayland Eheart,et al.  Evaluation of Neural Networks for Modeling Nitrate Concentrations in Rivers , 2003 .

[30]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[31]  C. Perrin,et al.  Improvement of a parsimonious model for streamflow simulation , 2003 .

[32]  A. Shamseldin Application of a neural network technique to rainfall-runoff modelling , 1997 .

[33]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[34]  Martin T. Hagan,et al.  Gauss-Newton approximation to Bayesian learning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[35]  Simon X. Yang,et al.  Neural networks for predicting nitrate-nitrogen in drainage water , 2003 .

[36]  N. Lauzon,et al.  Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions , 2004 .

[37]  V. Andréassian,et al.  Spatial and temporal variability of Total Suspended Solids in the Seine basin , 1999, Hydrobiologia.

[38]  M Sivakumar,et al.  Comparison of artificial neural network and regression models in the prediction of urban stormwater quality. , 2008, Water environment research : a research publication of the Water Environment Federation.

[39]  François Anctil,et al.  A soil moisture index as an auxiliary ANN input for stream flow forecasting , 2004 .

[40]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[41]  G. Lischeid Investigating trends of hydrochemical time series of small catchments by artificial neural networks , 2001 .

[42]  R. Wieland,et al.  The use of neural networks in agroecological modelling , 1995 .

[43]  W. J. Northcott,et al.  DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK FOR HYDROLOGIC AND WATER QUALITY MODELING OF AGRICULTURAL WATERSHEDS , 2004 .

[44]  Shiv O. Prasher,et al.  PREDICTION OF ANNUAL NITRATE-N LOSSES IN DRAIN OUTFLOWS WITH ARTIFICIAL NEURAL NETWORKS , 2000 .