Effect of initiation feature on microstructure-scale fatigue crack propagation in Al–Zn–Mg–Cu

Abstract High fidelity measurements of constituent particle or corrosion topography nucleated fatigue crack growth rates (da/dN) are established for 7075-T651 in humid air. Values of microstructure-scale da/dN are determined by microscopy of programmed load-induced crack surface markers, rather than surface-only measurements. Both pristine and corroded specimen da/dN from various applied stress levels are successfully correlated using continuum-elastic stress intensity (ΔK or ΔK and Kmax) or dislocation-based (Bilby–Cottrell–Swindon) crack tip opening displacement (cyclic ϕ and ϕmax), with the former accounting for the gradient of elastic stress concentration due to the initiating feature. Values of da/dN vary by an order of magnitude at each fixed driving force due to microstructural influences that result in a locally irregular crack front. Grain-scale models using stress intensity closure or slip-based crystal plasticity do not capture experimental da/dN variability. Due to an inadequate mechanistic basis, mechanics-inspired models of da/dN do not predict multiple growth regimes that are typical of environment enhanced cracking. An elastic ΔK-based description of long crack da/dN data for a given alloy-environment can be transformed to a continuum elastic–plastic ϕc basis to provide a mean crack growth rate description. Coupling mean rates with a statistical description of microstructure sensitive variability, and dislocation or crystal plasticity-finite element modeling of component ϕc for non-continuum cracking, will enhance prognosis in the MSC regime.

[1]  K. J. Miller,et al.  What is fatigue damage? A view point from the observation of low cycle fatigue process , 2005 .

[2]  Richard P. Gangloff,et al.  Effect of corrosion severity on fatigue evolution in Al–Zn–Mg–Cu , 2010 .

[3]  K. Lam,et al.  Multiple crack interaction and its effect on stress intensity factor , 1991 .

[4]  Rj Bucci,et al.  Predicting fatigue life of pre-corroded 2024-T3 aluminum from breaking load tests , 2004 .

[5]  S. Lynch Mechanisms of environmentally assisted cracking in AlZnMg single crystals , 1982 .

[6]  R. Ritchie,et al.  Estimation of the effects of plasticity and resulting crack closure during small fatigue crack growth , 2001 .

[7]  Lyndon Edwards,et al.  Effect of surface texture on the initiation and propagation of small fatigue cracks in a forged 6082 aluminium alloy , 1993 .

[8]  F. M. Burdekin,et al.  The crack opening displacement approach to fracture mechanics in yielding materials , 1966 .

[9]  K. Tanaka,et al.  Mechanics of fatigue crack propagation by crack-tip plastic blunting , 1984 .

[10]  R. Fields,et al.  Basic questions in fatigue , 1988 .

[11]  R. Sunder Fatigue as a process of cyclic brittle microfracture , 2005 .

[12]  Scott Fawaz,et al.  Accurate stress intensity factor solutions for corner cracks at a hole , 2004 .

[13]  Richard P. Gangloff,et al.  Environment-exposure-dependent fatigue crack growth kinetics for Al–Cu–Mg/Li , 2007 .

[14]  James C. Newman,et al.  SMALL CRACK GROWTH AND FATIGUE LIFE PREDICTIONS FOR HIGH‐STRENGTH ALUMINIUM ALLOYS: PART I—EXPERIMENTAL AND FRACTURE MECHANICS ANALYSIS , 2011 .

[15]  Phil E. Irving,et al.  Corrosion pit size distributions and fatigue lives: a study of the EIFS technique for fatigue design in the presence of corrosion , 2004 .

[16]  R. Ritchie,et al.  Small fatigue cracks , 1986 .

[17]  G. Pressouyre,et al.  Trap theory of Hydrogen embrittlement , 1980 .

[18]  James M. Larsen,et al.  Driving forces for localized corrosion‐to‐fatigue crack transition in Al–Zn–Mg–Cu , 2011 .

[19]  J. Grosskreutz,et al.  Fine subgrain structure adjacent to fatigue cracks , 1972 .

[20]  B. Craig,et al.  Multiple fatigue crack growth in pre-corroded 2024-T3 aluminum , 2005 .

[21]  Richard P. Gangloff,et al.  Crystallography of Fatigue Crack Propagation in Precipitation-Hardened Al-Cu-Mg/Li , 2007 .

[22]  M. Horstemeyer,et al.  Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy , 2007 .

[23]  J. Scully,et al.  Hydrogen Solubility, Diffusion and Trapping in High Purity Aluminum and Selected Al-Base Alloys , 2000 .

[24]  G. Kardomateas,et al.  The transition between small and long fatigue crack behavior and its relation to microstructure , 2008 .

[25]  A. J. Green,et al.  Characterisation of equivalent initial flaw sizes in 7050 aluminium alloy , 2006 .

[26]  M. A. Wilkins,et al.  Dislocation structures near a propagating fatigue crack in an al12%mg alloy , 1970 .

[27]  Ding,et al.  Small‐crack growth and fatigue life predictions for high‐strength aluminium alloys. Part II: crack closure and fatigue analyses , 2000 .

[28]  S. Spence,et al.  The EIFS distribution for anodized and pre-corroded 7010-T7651 under constant amplitude loading , 2005 .

[29]  C. Sarrazin-Baudoux,et al.  Some critical aspects of low rate fatigue crack propagation in metallic materials , 2010 .

[30]  S. Suresh Fatigue of materials , 1991 .

[31]  S. A. Fawaz Equivalent initial flaw size testing and analysis of transport aircraft skin splices , 2003 .

[32]  Ted Belytschko,et al.  Crack shielding and amplification due to multiple microcracks interacting with a macrocrack , 2007 .

[33]  R. Wei Fracture Mechanics: Integration of Mechanics, Materials Science and Chemistry , 2010 .

[34]  S. Pantelakis,et al.  Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy , 2005 .

[35]  G. R. Yoder,et al.  Quantitative analysis of microstructural effects on fatigue crack growth in widmanstätten Ti-6A1-4V and Ti-8Al-1Mo-1V , 1979 .

[36]  William A. Herman,et al.  A SIMPLIFIED LABORATORY APPROACH FOR THE PREDICTION OF SHORT CRACK BEHAVIOR IN ENGINEERING STRUCTURES , 1988 .

[37]  David L. McDowell,et al.  Simulation-based strategies for microstructure-sensitive fatigue modeling , 2007 .

[38]  H. W. Liu,et al.  Stretch zone width and striation spacing — The comparison of theories and experiments , 1980 .

[39]  M. Liao,et al.  Fatigue modeling for aircraft structures containing natural exfoliation corrosion , 2007 .

[40]  R. Ritchie,et al.  Propagation of short fatigue cracks , 1984 .

[41]  Kazuaki Shiozawa,et al.  CRACK INITIATION AND SMALL FATIGUE CRACK GROWTH BEHAVIOUR OF SQUEEZE‐CAST Al‐Si ALUMINIUM ALLOYS , 1997 .

[42]  P. R. Underhill,et al.  Fatigue crack growth from corrosion damage in 7075-T6511 aluminium alloy under aircraft loading , 2003 .

[43]  Susan Pitt,et al.  The generalised Frost–Dugdale approach to modelling fatigue crack growth , 2008 .

[44]  John R. Rice,et al.  Mechanics of Crack Tip Deformation and Extension by Fatigue , 1967 .

[45]  P. Bowen,et al.  Fatigue extrusions, slip band cracking and a novel hybrid concept for fatigue crack closure close to the crack tip , 2011 .

[46]  G. Krishnan,et al.  Microstructural-based physics of failure models to predict fatigue reliability , 2006, RAMS '06. Annual Reliability and Maintainability Symposium, 2006..

[47]  Leon Cizelj,et al.  The influence of grains' crystallographic orientations on advancing short crack , 2007 .

[48]  D. McDowell,et al.  Polycrystal orientation distribution effects on microslip in high cycle fatigue , 2003 .

[49]  Greg Welsh,et al.  A structural integrity prognosis system , 2009 .

[50]  Nisitani Hironobu,et al.  A small-crack growth law and its related phenomena , 1992 .

[51]  Ming Gao,et al.  Chemical and metallurgical aspects of environmentally assisted fatigue crack growth in 7075-T651 aluminum alloy , 1988 .

[52]  L. Edwards,et al.  Investigation of small fatigue cracks—I. Plastic deformation associated with small fatigue cracks , 1994 .

[53]  E. R. Rios,et al.  Modelling microstructurally sensitive fatigue short crack growth , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[54]  Richard P. Gangloff,et al.  Environmental Fatigue-Crack Surface Crystallography for Al-Zn-Cu-Mg-Mn/Zr , 2008 .

[55]  Daniel Kujawski,et al.  Crack-tip stresses and their effect on stress intensity factor for crack propagation , 2008 .

[56]  Mark F. Horstemeyer,et al.  Three‐dimensional finite element simulations of microstructurally small fatigue crack growth in 7075 aluminium alloy , 2006 .

[57]  Sankaran Mahadevan,et al.  Reliability-based reassessment of corrosion fatigue life , 2001 .

[58]  Fatigue growth of small corner cracks in aluminum 6061-T651 , 1997 .

[59]  Leo Christodoulou,et al.  Materials Damage Prognosis - Proceedings of a Symposium of the Materials Science and Technology 2004 Conference: Preface , 2005 .

[60]  E. Nes,et al.  Cyclic deformation of ferritic steel—II. Stage II crack propagation , 1991 .

[61]  K. J. Miller,et al.  Short Fatigue Cracks , 1992 .

[62]  D. Brillinger,et al.  Handbook of methods of applied statistics , 1967 .

[63]  Diran Apelian,et al.  Closure mechanisms in Al–Si–Mg cast alloys and long-crack to small-crack corrections , 2005 .

[64]  Richard P. Gangloff,et al.  Fatigue crack formation and growth from localized corrosion in Al–Zn–Mg–Cu , 2009 .

[65]  J. C. Newman,et al.  Fracture mechanics: Seventeenth volume , 1986 .

[66]  S. Agnew,et al.  Fatigue crack surface crystallography near crack initiating particle clusters in precipitation hardened legacy and modern Al–Zn–Mg–Cu alloys , 2011 .

[67]  P. Papanikos,et al.  Corrosion-induced hydrogen embrittlement of 2024 and 6013 aluminum alloys , 2004 .

[68]  Michele Ciavarella,et al.  One, no one, and one hundred thousand crack propagation laws: A generalized Barenblatt and Botvina dimensional analysis approach to fatigue crack growth , 2008 .

[69]  G. Yoder,et al.  Observations on microstructurally sensitive fatigue crack growth in a widmanstätten Ti-6Al-4V alloy , 1977 .

[70]  E. Lara‐Curzio,et al.  A model for the formation of fatigue striations and its relationship with small fatigue crack growth in an aluminum alloy , 2010 .

[71]  J. Allison,et al.  A small fatigue crack growth relationship and its application to cast aluminum , 2005 .

[72]  R. Gangloff,et al.  Environment and microstructure effects on fatigue crack facet orientation in an AlLiCuZr alloy , 1996 .

[73]  E. R. Rios,et al.  THE EFFECT OF GRAIN SIZE ON THE FATIGUE OF COMMERCIALLY PURE ALUMINIUM , 1995 .

[74]  N. Noda,et al.  Stress Concentration Factor Formulas Useful for All Notch Shapes in a Flat Test Specimen Under Tension and Bending , 2002 .

[75]  David L. McDowell,et al.  Estimating fatigue sensitivity to polycrystalline Ni‐base superalloy microstructures using a computational approach , 2007 .

[76]  N. Dowling Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue , 1993 .

[77]  Margery Hoffman,et al.  Corrosion and fatigue research — structural issues and relevance to naval aviation , 2001 .

[78]  J. Knott,et al.  Fundamentals of Fracture Mechanics , 2008 .

[79]  Ne Ashbaugh,et al.  The role of air in fatigue load interaction , 2003 .

[80]  J. Newman,et al.  Simulating small crack growth behaviour using crystal plasticity theory and finite element analysis , 2004 .

[81]  A. Navarro,et al.  Fatigue crack growth modelling by successive blocking of dislocations , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[82]  P. Bowen,et al.  In situ SEM observations of the contrasting effects of an overload on small fatigue crack growth at two different load ratios in 2024-T351 aluminium alloy , 1997 .

[83]  A. K. Vasudevan,et al.  Crack tip driving forces and crack growth representation under fatigue , 2004 .

[84]  H. Flower,et al.  The micromechanisms of fatigue crack growth in a commercial Al-Zn-Mg-Cu alloy , 1982 .

[85]  J. Newman,et al.  Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads , 1984 .

[86]  C. Sarrazin-Baudoux,et al.  6.05 – Environmentally Assisted Fatigue in the Gaseous Atmosphere , 2003 .

[87]  Scott A. Fawaz,et al.  Compilation Of Damage Findings From Multiple Recent Teardown Analysis Programs , 2009 .

[88]  Kumar V. Jata,et al.  Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: modeling and experimental studies , 2001 .

[89]  Robert P. Wei,et al.  Fracture mechanics and surface chemistry studies of fatigue crack growth in an aluminum alloy , 1980 .

[90]  Chingshen Li Vector CTD analysis for crystallographic crack growth , 1990 .

[91]  A. Cottrell,et al.  The spread of plastic yield from a notch , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[92]  Chun H. Wang,et al.  Interactions of fatigue cracks with elastic obstacles , 2001 .

[93]  J. Papazian,et al.  Observations of fatigue crack initiation in 7075-T651 , 2010 .

[94]  R. H. Stone Residual life prediction methods for gas turbine components , 1988 .

[95]  A. Rollett,et al.  Three Dimensional Microstructures: Statistical Analysis of Second Phase Particles in AA7075-T651 , 2006 .

[96]  F. Hauser,et al.  Deformation and Fracture Mechanics of Engineering Materials , 1976 .

[97]  James C. Newman,et al.  The Merging of Fatigue and Fracture Mechanics Concepts: A Historical Perspective , 1998 .

[98]  L. Molent,et al.  Crack growth of physically small cracks , 2007 .

[99]  Leon M Keer,et al.  Dislocation based fracture mechanics , 1996 .

[100]  I. Simonovski,et al.  Crack tip displacements of microstructurally small cracks in 316L steel and their dependence on crystallographic orientations of grains , 2007 .

[101]  Mark F. Horstemeyer,et al.  Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy , 2009 .

[102]  J. Lankford,et al.  Fatigue crack growth in metals and alloys: mechanisms and micromechanics , 1992 .

[103]  David L. McDowell,et al.  Microstructure-based fatigue modeling of cast A356-T6 alloy , 2003 .

[104]  J. Allison,et al.  Small fatigue crack growth in metallic materials: A model and its application to engineering alloys , 2007 .

[105]  J. Newman,et al.  Fatigue-life prediction methodology using small-crack theory , 1999 .

[106]  D. Nelson,et al.  A study of small crack growth in aluminum alloy 7075-T6 , 2002 .