Influence of MR damper modeling on vehicle dynamics

The influence of magneto-rheological damper modeling in vehicle dynamics analysis is studied. Several tests using CarSim??compare a four-corner controlled semi-active suspension for two different magneto-rheological damper models. The magneto-rheological damper characteristics were identified from experimental data. A model-free controller discards the influence of control and emphasizes the compliance of the magneto-rheological damper model; the characteristics of the vehicle index performance considered were comfort, road holding, handling, roll and suspension deflection. The comparison for magneto-rheological damper dynamics and semi-active suspension covers the automotive bandwidth. The results show that high precision of a magneto-rheological damper model as an isolated feature is not enough. The magneto-rheological damper model, as a component of a vehicle suspension, needs to simulate with passive precision and variable damping forces. The findings exhibit the requisite of accurate models for evaluation of semi-active control systems in classic tests. The lack of the friction component in a magneto-rheological damper model leads to an overestimation in handling and stability.

[1]  L. Guvenc,et al.  Semiactive Suspension Control of a Light Commercial Vehicle , 2008, IEEE/ASME Transactions on Mechatronics.

[2]  Seung-Bok Choi,et al.  Vibration control of magnetorheological damper system subjected to parameter variations , 2008 .

[3]  Tomokazu Suzuki,et al.  The Statistical Tire Model and Its Application to Vehicle Dynamics Design , 2013 .

[4]  Haiyan Hu,et al.  Nonlinear Stiffness of a Magneto-Rheological Damper , 2005 .

[5]  Keum-Shik Hong,et al.  Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling, and Hardware-in-the-Loop Tuning , 2002 .

[6]  Manuel de la Sen,et al.  Composite semiactive control of a class of seismically excited structures , 2001, J. Frankl. Inst..

[7]  Kyongsu Yi,et al.  Development of Integrated Control of Electronic Stability Control, Continuous Damping Control and Active Anti-Roll Bar for Vehicle Yaw Stability , 2013 .

[8]  S. Rakheja,et al.  Influence of suspension damper asymmetry on vehicle vibration response to ground excitation , 2003 .

[9]  O. Sename,et al.  Survey and performance evaluation on some automotive semi-active suspension control methods: A comparative study on a single-corner model , 2012, Annu. Rev. Control..

[10]  Kun Cao,et al.  Vehicle Mass Estimation Based on High-Frequency-Information Extraction , 2013 .

[11]  Jeong-Hoi Koo,et al.  A comprehensive analysis of the response time of MR dampers , 2006 .

[12]  Shirley J. Dyke,et al.  PHENOMENOLOGICAL MODEL FOR MAGNETORHEOLOGICAL DAMPERS , 1997 .

[13]  Pinhas Barak Passive Versus Active and Semi-Active Suspension from Theory to Application in North American Industry , 1992 .

[14]  Paul Young,et al.  An insight into linear quarter car model accuracy , 2011 .

[15]  Olivier Sename,et al.  An LPV Approach for Semi-Active Suspension Control , 2010 .

[16]  Boris Lohmann,et al.  Frequency-Selective Adaptive Control of a Hybrid Suspension System , 2013 .

[17]  Carlo Novara,et al.  Semi-Active Suspension Control Using “Fast” Model-Predictive Techniques , 2006, IEEE Transactions on Control Systems Technology.

[18]  David Crolla,et al.  The Influence of Damper Properties on Vehicle Dynamic Behaviour , 2002 .

[19]  S. Narayanan,et al.  Response of a quarter car model with optimal magnetorheological damper parameters , 2013 .

[20]  Gabriele Fruhmann,et al.  On the performance of rheological shock absorber models in full vehicle simulation , 2007 .

[21]  P. Antsaklis,et al.  Modeling the Response of ER Damper: Phenomenology and Emulation , 1996 .

[22]  Wei-Hsin Liao,et al.  Magnetorheological fluid dampers: a review of parametric modelling , 2011 .

[23]  Kihong Park,et al.  Modelling of continuously variable damper for design of semi-active suspension systems , 2003 .

[24]  L Dugard,et al.  An LPV control approach for semi-active suspension control with actuator constraints , 2010, Proceedings of the 2010 American Control Conference.

[25]  Seung-Ik Lee,et al.  A hysteresis model for the field-dependent damping force of a magnetorheological damper , 2001 .

[26]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[27]  Shaopu Yang,et al.  Dynamic Modeling of Magnetorheological Damper Behaviors , 2006 .

[28]  Cristiano Spelta,et al.  Mixed Sky-Hook and ADD: Approaching the Filtering Limits of a Semi-Active Suspension , 2007 .

[29]  Ruben Morales-Menendez,et al.  Hysteresis Modelling for a MR Damper , 2010 .

[30]  Sergio M. Savaresi,et al.  Control of magnetorheological dampers for vibration reduction in a washing machine , 2009 .

[31]  Michael Valášek,et al.  Extended Ground-Hook - New Concept of Semi-Active Control of Truck's Suspension , 1997 .

[32]  Keith Worden,et al.  Nonlinear system identification of automotive dampers: A time and frequency-domain analysis , 2009 .

[33]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[34]  L. R. Miller Tuning passive, semi-active, and fully active suspension systems , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[35]  Christopher M. Clark,et al.  Development of a systematic and practical methodology for the design of vehicles semi-active suspension control system , 2010 .

[36]  Sergio M. Savaresi,et al.  A Single-Sensor Control Strategy for Semi-Active Suspensions , 2009, IEEE Transactions on Control Systems Technology.

[37]  J. A. Calvo,et al.  Influence of a shock absorber model on vehicle dynamic simulation , 2009 .

[38]  Şevki Çeşmeci,et al.  Comparison of some existing parametric models for magnetorheological fluid dampers , 2010 .

[39]  Sergio M. Savaresi,et al.  Identification of semi-physical and black-box non-linear models: the case of MR-dampers for vehicles control , 2005, Autom..

[40]  Mehdi Ahmadian,et al.  Efficient Test Procedures for Characterizing MR Dampers , 2006 .

[41]  J. G. S. da Silva Dynamical performance of highway bridge decks with irregular pavement surface , 2004 .

[42]  Ruben Morales-Menendez,et al.  Control Strategies for an Automotive Suspension with a MR Damper , 2011 .

[43]  Miao Yu,et al.  Comparative research on semi-active control strategies for magneto-rheological suspension , 2010 .