Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes.

Highly stable and luminescent InP/GaP/ZnS QDs with a maximum quantum yield of 85% were synthesized by in situ method. The GaP shell rendered passivation of the surface and removed the traps. TCSPC data showed an evidence for the GaP shell. InP/GaP/ZnS QDs show better stability than InP/ZnS. We studied the optical properties of white QD-LEDs corresponding to various QD concentrations. Among various concentrations, the white QD-LEDs with 0.5 mL of QDs exhibited a luminous efficiency of 54.71 lm/W, Ra of 80.56, and CCT of 7864 K.

[1]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[2]  Klavs F. Jensen,et al.  Full Color Emission from II–VI Semiconductor Quantum Dot–Polymer Composites , 2000 .

[3]  E. Aydil,et al.  Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. , 2009, ACS nano.

[4]  Rakesh Agrawal,et al.  Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. , 2009, Journal of the American Chemical Society.

[5]  M. Haase,et al.  Strongly luminescent InP/ZnS core-shell nanoparticles. , 2001, ChemPhysChem.

[6]  Jiayu Zhang,et al.  Electronic structure transformation from a quantum-dot to a quantum-wire system: Photoluminescence decay and polarization of colloidal CdSe quantum rods , 2002 .

[7]  S. Haam,et al.  Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. , 2007, Angewandte Chemie.

[8]  Kookheon Char,et al.  InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability , 2011 .

[9]  Louis E. Brus,et al.  The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots") , 1990 .

[10]  Sang-Wook Kim,et al.  Quantum-dot-sensitized solar cells fabricated by the combined process of the direct attachment of colloidal CdSe quantum dots having a ZnS glue layer and spray pyrolysis deposition. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[11]  Huang-Yao Hong,et al.  InGaN-CdSe-ZnSe quantum dots white LEDs , 2006 .

[12]  Xiaogang Peng,et al.  Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent , 2002 .

[13]  T. Nann,et al.  Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals , 2008 .

[14]  Weidong Yang,et al.  Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods , 2001, Science.

[15]  Nelson E. Coates,et al.  Solution-processed inorganic solar cell based on in situ synthesis and film deposition of CuInS2 nanocrystals. , 2010, Journal of the American Chemical Society.

[16]  V. Bulović,et al.  Colloidal PbS quantum dot solar cells with high fill factor. , 2010, ACS nano.

[17]  D. Son,et al.  Effects of ion solvation and volume change of reaction on the equilibrium and morphology in cation-exchange reaction of nanocrystals. , 2008, Journal of the American Chemical Society.

[18]  G. Gigli,et al.  Bright White‐Light‐Emitting Device from Ternary Nanocrystal Composites , 2006 .

[19]  Yadong Yin,et al.  Cation Exchange Reactions in Ionic Nanocrystals , 2004, Science.

[20]  A Paul Alivisatos,et al.  Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. , 2009, Nano letters.

[21]  T. Nann,et al.  Rapid synthesis of high-quality InP nanocrystals. , 2006, Journal of the American Chemical Society.

[22]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[23]  E. Shevchenko,et al.  Insulator-to-Metal Transition in Nanocrystal Assemblies Driven by in Situ Mild Thermal Annealing , 2004 .

[24]  C. Duty,et al.  Semiconductor-nanocrystals-based white light-emitting diodes. , 2010, Small.

[25]  Chang-Soo Han,et al.  Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED. , 2010, Nanotechnology.

[26]  Sang-Wook Kim,et al.  Step-Wise Synthesis of InP/ZnS Core−Shell Quantum Dots and the Role of Zinc Acetate , 2009 .

[27]  Jiayu Zhang,et al.  Modification of spontaneous emission from CdSe/CdS quantum dots in the presence of a semiconductor interface. , 2002, Optics letters.

[28]  David Battaglia,et al.  Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. , 2007, Journal of the American Chemical Society.

[29]  A Paul Alivisatos,et al.  Millisecond kinetics of nanocrystal cation exchange using microfluidic X-ray absorption spectroscopy. , 2007, The journal of physical chemistry. A.

[30]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[31]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[32]  Jaehee Cho,et al.  Preparation of Highly Luminescent Nanocrystals and Their Application to Light‐Emitting Diodes , 2007 .

[33]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[34]  F. Liu,et al.  High-Efficiency Hybrid Polymer Solar Cells with Inorganic P- and N-Type Semiconductor Nanocrystals to Collect Photogenerated Charges , 2010 .

[35]  Tim Liedl,et al.  Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. , 2005, Nano letters.

[36]  M. R. Kim,et al.  Fabrication, spectroscopy, and dynamics of highly luminescent core-shell InP@ZnSe quantum dots. , 2010, Journal of colloid and interface science.

[37]  D. Jeon,et al.  White Light‐Emitting Diodes with Excellent Color Rendering Based on Organically Capped CdSe Quantum Dots and Sr3SiO5:Ce3+,Li+ Phosphors , 2008, Advanced materials.

[38]  Duncan W. McBranch,et al.  Electron and hole relaxation pathways in semiconductor quantum dots , 1999 .

[39]  Ứ. T. D. Thuý,et al.  Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots , 2010 .

[40]  Ron C. Hardman A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors , 2005, Environmental health perspectives.

[41]  Hao Wu,et al.  Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors , 2005 .

[42]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[43]  Carstensen,et al.  Direct determination of III-V semiconductor surface band gaps. , 1990, Physical review. B, Condensed matter.

[44]  Andreas Kornowski,et al.  CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals , 2004 .

[45]  Byungki Kim,et al.  White‐Light‐Emitting Diodes with Quantum Dot Color Converters for Display Backlights , 2010, Advanced materials.

[46]  Lin-Wang Wang,et al.  Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange , 2007, Science.

[47]  Jiayu Zhang,et al.  Surface-Related Emission in Highly Luminescent CdSe Quantum Dots , 2003 .

[48]  William L. Wilson,et al.  Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states , 1992 .

[49]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[50]  A. Rogach,et al.  Etching of Colloidal InP Nanocrystals with Fluorides: Photochemical Nature of the Process Resulting in High Photoluminescence Efficiency , 2002 .

[51]  Miroslaw Batentschuk,et al.  Silica‐Coated InP/ZnS Nanocrystals as Converter Material in White LEDs , 2008 .

[52]  D. Jeon,et al.  White-light emitting surface-functionalized ZnSe quantum dots: europium complex-capped hybrid nanocrystal , 2011 .

[53]  V. Bulović,et al.  Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. , 2007, Nano letters.

[54]  Jaehyun Park,et al.  CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence , 2011 .

[55]  Liang Li,et al.  One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. , 2008, Journal of the American Chemical Society.

[56]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[57]  Hilmi Volkan Demir,et al.  White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes , 2007 .

[58]  Vahid Akhavan,et al.  Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.

[59]  Dai Fukumura,et al.  InAs(ZnCdS) quantum dots optimized for biological imaging in the near-infrared. , 2009, Journal of the American Chemical Society.