A stochastic geometric approach to sensor array processing

A new unified mathematical framework for sensor array processing is proposed. The proposed framework combines Bayesian estimation with stochastic geometry to accommodate prior information, uncertainty in array parameters, and unknown and stochastically time-varying number of nonstationary sources. A system model for a common signal setting is constructed to demonstrate the proposed framework.

[1]  Kristine L. Bell,et al.  A Bayesian approach to robust adaptive beamforming , 2000, IEEE Trans. Signal Process..

[2]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[3]  Randolph L. Moses,et al.  A bayesian approach to array geometry design , 2005, IEEE Transactions on Signal Processing.

[4]  H. Vincent Poor,et al.  IEEE Workshop on Statistical Signal Processing, SSP 2014, Gold Coast, Australia, June 29 - July 2, 2014 , 2014, Symposium on Software Performance.

[5]  T. Kirubarajan,et al.  PHD filtering for tracking an unknown number of sources using an array of sensors , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[6]  David G. Long,et al.  Array signal processing , 1985, IEEE Trans. Acoust. Speech Signal Process..

[7]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .

[8]  Anuj Srivastava,et al.  A Bayesian approach to geometric subspace estimation , 2000, IEEE Trans. Signal Process..

[9]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[10]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[11]  James P. Reilly,et al.  Reversible jump MCMC for joint detection and estimation of sources in colored noise , 2002, IEEE Trans. Signal Process..

[12]  David Suter,et al.  Joint Detection and Estimation of Multiple Objects From Image Observations , 2010, IEEE Transactions on Signal Processing.

[13]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[14]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[15]  V. Voipio Adaptive antennas , .

[16]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[17]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[18]  I. Molchanov Theory of Random Sets , 2005 .

[19]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[20]  Ba-Ngu Vo,et al.  The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations , 2009, IEEE Transactions on Signal Processing.

[21]  A. Lee Swindlehurst,et al.  A Bayesian approach to auto-calibration for parametric array signal processing , 1994, IEEE Trans. Signal Process..

[22]  Amr El-Keyi,et al.  Robust adaptive beamforming based on the Kalman filter , 2005, IEEE Transactions on Signal Processing.